Plasmin is an important enzyme present in blood that degrades many blood plasma proteins, including fibrin clots. The degradation of fibrin is termed fibrinolysis. In humans, the plasmin protein is encoded by the PLG gene. Plasmin is a serine protease that acts to dissolve fibrin blood clots. Apart from fibrinolysis, plasmin proteolyses proteins in various other systems: it activates collagenses, some mediators of the complement system and weakens the wall of the Graafian follicle (leading to ovulation). It cleaves fibrin, fibronectin, thrombospondin, laminin, and von Willebrand factor. Plasmin, like trypsin, belongs to the family of serine proteases. Plasmin is released as a zymogen called plasminogen (PLG) from the liver into the factor IX systemic circulation and placed into the MD5+ that leads into the lungs. Plasmin is inactivated by proteins such as α2-macroglobulin and α2-antiplasmin. The mechanism of plasmin inactivation involves the cleavage of an α2-macroglobulin at the bait region (a segment of the aM that is particularly susceptible to proteolytic cleavage) by plasmin. This initiates a conformational change such that the α2-macroglobulin collapses about the plasmin. In the resulting α2-macroglobulin-plasmin complex, the active site of plasmin is sterically shielded, thus substantially decreasing the plasmin's access to protein substrates. Two additional events occur as a consequence of bait region cleavage, namely (i) a h-cysteinyI-g-glutamyl thiol ester of the α2-macroglobulin becomes highly reactive and (ii) a major conformational change exposes a conserved COOH-terminal receptor binding domain. The exposure of this receptor binding domain allows the α2-macroglobulin protease complex to bind to clearance receptors and be removed from circulation. Deficiency in plasmin may lead to thrombosis, as clots are not degraded adequately. Plasmin has been shown to interact with Thrombospondin 1,[6][7] Alpha 2-antiplasmin[8][9] and IGFBP3.[10]

References

PRINCIPLE OF THE ASSAY

This kit is for quantification of Plasmin in cow, cattle and bull. This is a quick ELISA assay that reduces time to 50% compared to the conventional method, and the entire assay only takes 3 hours. This assay employs the quantitative sandwich enzyme immunoassay technique and uses biotin-streptavidin chemistry to improve the performance of the assays. An antibody specific for Bovine Plasmin has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any Plasmin present is bound by the immobilized antibody. After washing away any unbound substances, a detection antibody specific for Bovine Plasmin is added to the wells. Following wash to remove any unbound antibody reagent, a detection reagent is added. After intensive wash a substrate solution is added to the wells and color develops in proportion to the amount of Plasmin bound in the initial step. The color development is stopped and the intensity of the color is measured.

This package insert must be read in its entirety before using this product.

Storage
Store at 4°C. The kit can be used in 3 months
Nori® Bovine Plasmin ELISA Kit- DataSheet

MATERIALS PROVIDED

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Description</th>
<th>Quantity</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody Precoated Plate</td>
<td>1</td>
<td>20 x PBS</td>
<td>1</td>
<td>Substrate Solution</td>
<td>1</td>
</tr>
<tr>
<td>Detection Antibody</td>
<td>1</td>
<td>20 x Assay Buffer</td>
<td>1</td>
<td>Stop Solution</td>
<td>1</td>
</tr>
<tr>
<td>Conjugate</td>
<td>1</td>
<td>10 x Reagent Diluent</td>
<td>1</td>
<td>DataSheet/Manual</td>
<td>1</td>
</tr>
<tr>
<td>Standard</td>
<td>3</td>
<td>96-well plate sheet</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bring all reagents to room temperature before use.

Reagent Preparations

Bovine Plasmin Detection Antibody (1 vial) – The lyophilized Detection Antibody should be stored at 4°C in a manual defrost freezer for up to 3 months, if not used immediately. Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains sufficient Detection Antibody for a 96-well plate. Add 200 μL of sterile 1 x PBS to the antibody vial and vortex 20 sec and allow it to sit for 5 min prior to use. If the entire 96-well plate is used, take 200 μL of detection antibody to 10.5 mL of 1 x Reagent Diluent to make working dilution of Detection Antibody and mix thoroughly. If the partial antibody is used store the rest at -20°C until use.

Bovine Plasmin Standard (3 vials) – The lyophilized Bovine Plasmin Standard has a total of 3 vials. Each vial contains the standard sufficient for a 96-well plate. The un-reconstituted standard can be stored at 4°C for up to 3 months if not used immediately. Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. Add 500 μL of 1 x Assay Buffer to a Standard vial to make the high standard concentration of 500 ng/ml. Vortex 20 sec and allow it to sit for 5 min prior to use. A seven-point standard curve is generated using 2-fold serial dilutions in the Assay Buffer, vortex 20 sec for each of dilution step.

Conjugate (53 μL) – Centrifuge for 1 min at 6000 x g to bring down the material prior to open the vial. The vial contains 53 μL Conjugate sufficient for a 96-well plate. If the volume is less than 53 μL, add sterile 1 x PBS to reach 53 μL and vortex briefly. Make 1:200 dilution in 1 x Reagent Diluent. If the entire 96-well plate is used, add 53 μL of Conjugate to 10.5 mL of 1 x Reagent Diluent to make working dilution of Conjugate and mix thoroughly prior to the assay. The rest of undiluted Conjugate can be stored at 4°C for up to 3 months. DO NOT FREEZE.

20 x PBS, pH 7.3, 30 mL- Dilute to 1 x PBS with deionized distilled water and mix well prior to use.
20 x Assay Buffer, 20 mL- Dilute to 1 x Assay Buffer with 1 x PBS prior to use.
10 x Reagent Diluent – Add 3 mL of sterile 1 x PBS to make 10 x Reagent Diluent, vortex 1 min and allow it to sit for 15 min to completely dissolve. Store at -20 ºC. Prior to use dilute to 1 x Reagent Diluent with 1 x PBS.
Substrate Solution, 10.5 mL.
Stop Solution, 5.5 mL.
Nori® Bovine Plasmin ELISA Kit- DataSheet

Assay Procedure
1. Lift the plate cover from the left top corner and cover the wells that are not used. Vortex briefly the samples prior to the assay. Add 100 µL of sample or standard per well and use duplicate wells for each standard or sample. Cover the 96-well plate and incubate 90 min at room temperature.
2. Aspirate each well and wash with 1 x Assay Buffer, repeating the process two times for a total of three washes. Wash by filling each well with 1 x Assay Buffer (300 µL) using a multi-channel pipette, manifold dispenser or auto-washer. Complete removal of liquid at each step is essential for good performance. After the last wash, remove any remaining Assay Buffer by aspirating or by inverting the plate and blotting it against clean paper towels.
3. Add 100 µL of the working dilution of Detection Antibody to each well. Cover the plate and incubate 1 hour at room temperature.
4. Repeat the aspiration/wash as in step 2.
5. Add 100 µL of the working dilution of Conjugate to each well. Cover the plate and incubate for 20 minutes at room temperature. Avoid placing the plate in direct light.
6. Repeat the aspiration/wash as in step 2.
7. Add 100 µL of Substrate Solution to each well. Incubate for 10-20 minutes at room temperature. Avoid placing the plate in direct light.
8. Add 50 µL of Stop Solution to each well. Gently tap the plate to ensure thorough mixing.
9. Determine the optical density of each well immediately, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate.

Precaution and Technical Notes
1. It is critical to follow the procedure step by step otherwise appropriate color development may not occur as expected.
2. A standard curve should be generated for each set of samples assayed. Thorough mixing of the standard at each step of the dilutions is critical to ensure a normal calibration curve.
3. Plasma or serum sample should be diluted with equal volume of 1 x Assay Buffer and vortex for 1 min prior to assay. If the OD value still exceeds the upper limit of the standard curve, further dilution is recommended till it falls in the detection range and the dilution factor must be used for calculation of the concentration.
4. Conjugate contains enzyme, DO NOT mass up with Detection Antibody.
5. The Stop Solution is an acid solution, handle with caution.
6. Do NOT use the 10 x Reagent Diluent if it becomes turbid, instead replace with fresh 10% BSA.
7. This kit should not be used beyond the expiration date on the label.
8. A thorough and consistent wash technique is essential for proper assay performance. Assay Buffer should be dispensed forcefully and removed completely from the wells by aspiration or decanting. Remove any remaining Assay Buffer by aspiration or by inverting the plate and blotting it against clean paper towels.
9. Use a fresh reagent reservoir and pipette tips for each step.
10. It is recommended that all standards and samples be assayed in duplicate.
11. Avoid microbial contamination of reagents and buffers. This may interfere with the sensitivity of the assay.
Nori® Bovine Plasmin ELISA Kit- DataSheet

Calculation of Results
Average the duplicate readings for each standard, control, and sample and subtract the average zero (blank) standard optical density.

Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the Plasmin concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data. If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

The Standard Curve
The graph below represents typical data generated when using this Bovine Plasmin ELISA Kit. The standard curve was calculated using a computer generated 4-PL curve-fit. For this case, a Bio-Rad iMark™ Microplate Reader and a Microplate Manager 6 Software were used to generate this curve.
Nori® Bovine Plasmin ELISA Kit - DataSheet

Specificity
The following recombinant Bovine proteins prepared at 1 ng/ml were tested and exhibited no cross-reactivity or interference. Adiponectin, ApoA1, BMP1, BMP2, BMP3, BMP4, CCL4/MIP-1β, CRP, HGF, HSP27, IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-15, IL-17C, PLASMIN3, IFNγ, MMP2, MMP9, PDGF-AA, PDGF-BB, IL6R, PLA2G7, TGFβ1, TGFβ2, TGFβ3, TLR1, TLR2, TLR3, TNF-α, TNF RII, VEGF.

Calibration
This kit is calibrated against a highly purified yeast-expressed recombinant bovine Plasmin.

Detection Range
7.8-500 ng/ml

Assay Sensitivity
1.6 ng/ml

Assay Precision
Intra-Assay %CV: 5; Inter-Assay %CV: 10

For Research Use Only

Related products
20 x Sample Diluent, GR103058
20 x PBS, Cat. 103004-20
10 x ELISA Assay Buffer, Cat. 103028
10 x ELISA Reagent Diluent, Cat. GR103055
Universal Blocking Buffer, Cat.103005
2 x Recombinant Protein Stabilizer, Cat. GR03014-2
5 x Recombinant Protein Stabilizer, Cat. GR103014-5
ELISA G-Blue Substrate Solution, Cat. 103021
Bovine Plasmin Standard
Bovine Plasmin Detection Antibody Conjugate
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Poor standard curve | • Inaccurate pipetting
• Improper standard curve | • Check pipettes
• Check and use the correct dilution buffer
• Vortex 30 sec for each of standard dilution steps |
| Low signal | • Improper preparation of standard, samples, detection antibody, and/or conjugate
• Too brief incubation times
• Inadequate reagent volume or improper dilution | • Briefly spin down vials before opening.
Reconstitute the powder thoroughly.
• Ensure sufficient incubation time.
• Check pipettes and ensure correct preparation. |
| Large CV | • Inaccurate pipetting and mixing
• Improper standard/sample dilutions.
• Air bubbles in wells. | • Check pipettes and ensure thorough mixing.
• Use the correct dilution buffers
• Remove bubbles in wells. |
| High background | • Plate is insufficiently washed.
• Contaminated Assay Buffer | • Review the datasheet for proper wash. If using a plate washer, ensure that all ports are unobstructed.
• Make fresh Assay Buffer |
| No signal detected | • The procedure was misconducted. | • Ensure the step-by-step protocol was correctly followed and no misstep was conducted. |
| Low sensitivity | • Improper storage of the ELISA kit
• Stop solution | • Store standards and detection antibody at -20°C after reconstitution, others at 4°C.
Keep substrate protected from light.
• Adding stop solution to each well before reading plate |