xMAP® Cookbook
A collection of methods and protocols for developing multiplex assays with xMAP Technology.
Effective Date: 01 July 2014

Certain applications using Luminex® Microspheres, including those illustrated in this documentation, may be covered by patents owned by parties other than Luminex. Purchase and use of Luminex Microspheres does not convey a license to any third party patents unless explicitly stated in writing. You are responsible for conducting the necessary due diligence and securing rights to any third party intellectual property required for your specific application(s) of any Luminex Microspheres. Nothing herein is to be construed as recommending any practice or any product in violation of any patent or in violation of any law or regulation.
Table of Contents

1. Introduction .. 4
2. xMAP® Technology .. 5
3. Development of an xMAP Assay .. 7
 3.1 Assay Design .. 8
 3.2 Reagents and Equipment ... 10
4. Proteomic Applications .. 12
 4.1 Development of xMAP Proteomic assays ... 13
 4.2 Protein Coupling .. 14
 4.2.1 Carbodiimide Coupling Protocol for Antibodies and Proteins 16
 4.2.2 Coupling Confirmation ... 20
 4.3 Common xMAP Immunoassay Formats ... 24
 4.3.1 Capture Sandwich Immunoassay .. 25
 4.3.2 Competitive Immunoassay .. 31
 4.3.3 Indirect (Serological) Immunoassay ... 37
 4.3.4 Combined Capture Sandwich and Competitive Immunoassay 42
 4.4 Other Coupling Moieties .. 45
 4.4.1 Binding Biotinylated Peptides to LumAvidin® Microspheres 46
 4.4.2 Modification of Microspheres with ADH ... 48
 4.4.3 Coupling Peptides to ADH-Modified Microspheres .. 50
 4.4.4 Modification of Microspheres with MPBH ... 52
 4.4.5 Coupling Peptides to Maleimide-Modified Microspheres 54
 4.5 Optimization of Immunoassays ... 56
 4.6 Immunoassay Validation .. 67
 4.7 Proteomics FAQ’s ... 71
5. Genomic Applications .. 78
 5.1 Development of Nucleic Acid Assays ... 79
 5.2 Nucleic Acid Coupling .. 81
 5.2.1 Standard Nucleic Acid Coupling to xMAP Microspheres 83
 5.2.2 Oligonucleotide Coupling Confirmation .. 86
 5.3 Common Nucleic Acid Assay Formats .. 89
 5.3.1 Oligo Ligation Assay (OLA) SNP Typing .. 90
 5.3.2 Allele-Specific Primer Extension (ASPE) SNP Typing 99
 5.3.3 Target-Specific PCR Sequence Detection with MagPlex®-TAG™ Microspheres . 108
 5.3.4 Direct DNA Hybridization Sequence Detection .. 113
 5.3.5 MicroRNA Analysis .. 120
 5.4 Optimization of Nucleic Acid Assays ... 129
 5.5 Nucleic Acid Assay Validation ... 133
 5.6 Genomics FAQ’s .. 135
Appendix A – Common Buffers Used in xMAP Protocols .. 138
Appendix B – Equipment Needed for xMAP Protocols .. 140
Appendix C – Automated Bead Washing Option ... 143
Biological assays have evolved from relatively large volume reactions to smaller volume, faster, highly automated tests. Whether in a test tube rack, a microwell plate, or a micro-volume chip, these may all be considered ‘arrays’ of assays, where different samples are physically separated from one another.

Since biological assays are typically coupled to a colorimetric readout, the notion of ‘multiplexing’, or reading multiple test results in a single sample volume has been complicated primarily by spectral overlap. Color from one assay detection channel interferes with color in other detection channels. This limitation has made such multi-color assays useful only to a few analytes per sample.

While microarrays (2-dimensional solid arrays) allow small-volume assaying of physically separated features, limitations such as slow, solid-phase kinetics; instability of immobilized protein or nucleic acid capture molecules; and poor reproducibility may limit its broader application in the clinical or research laboratory.

Solution-phase multiplex assays remain highly desirable to laboratories due to the following benefits:

- reduced sample volume and other redundant consumables
- more data from the same amount of labor
- faster results due to solution-phase kinetics
In the late 1990s, scientists at Luminex® invented xMAP Technology, a major advance in multiplexed biological assays. xMAP Technology draws from the strengths of solid-phase separation technology without the typical limitations of solid-phase reaction kinetics. By combining advanced fluidics, optics, and digital signal processing with proprietary microsphere (“bead”) technology, xMAP Technology enables a high degree of multiplexing within a single sample volume. Featuring a flexible open-architecture design, xMAP Technology can be configured to perform a wide variety of assays quickly, cost-effectively, and accurately.

How does xMAP Technology work?

xMAP Technology uses colored beads to perform biological assays similar to ELISA or nucleic acid hybridization assays. By color-coding microscopic beads into many spectrally distinct sets, each bead set can be coated with a nucleic acid or protein capture molecule specific to a particular biological target, allowing the simultaneous capture of multiple analytes from a single sample. Because of the microscopic size and low density of these beads, assay reactions exhibit virtually solution-phase kinetics. However, once an assay is complete the solid-phase characteristics allow each bead to be analyzed discretely. By incorporating magnetic properties into xMAP Microspheres, assay washing is simplified while maintaining desirable solution-phase properties.

xMAP Technology name origin

x = biomarker or disease panel to be tested
MAP = Multi-Analyte Profiling
xMAP = multiplex biological testing of up to 500 analytes in a single sample volume

Figure 1 – xMAP Microspheres include two dyes where (A) one excitation wavelength allows observation of two separate fluorescence emission wavelengths, yielding (B) 100 unique microsphere sets (10x10 dye matrix); or three dyes where (C) one excitation wavelength allows observation of three separate fluorescence wavelengths, yielding (D) 500 unique microsphere sets. (10x10x5 dye matrix).
Multiple light sources inside the Luminex analyzer excite (1) the internal bead dyes that identify each microsphere particle and (2) any fluorescent reporter molecules captured during the assay. The instrument records dozens of readings for each bead set and produces a distinct result for each analyte in the sample. Using this process, xMAP Technology allows multiplexing of up to 500 unique bioassays within a single sample, both rapidly and precisely.

This revolution in multiplex biological assays has been licensed by Luminex to a number of kit developers in the clinical diagnostics, pharmaceutical and life science research markets. Commercially available kits exist for molecular diagnostics, immunodiagnostics, kinase profiling, cytokine/chemokine, genotyping, gene expression, and other applications.

In addition to commercial kits, Luminex supports custom assay development. This document is a summary of methods and protocols for developing multiplex biological assays with xMAP Technology.
Chapter 3

Development of an xMAP® Assay

The development process for xMAP multiplex assays is relatively simple, but does require a few unique considerations compared to monoplex assays. The following describes the general workflow of xMAP assay development.

Identify Appropriate Assay Design
- Protein/Nucleic Acid
- Assay Format (i.e. Capture Sandwich, Oligo Ligation, etc.)

Identify Necessary Reagents and Equipment
- Antibodies/Probes
- Microspheres
- Buffers
- Thermocycler
- Shaker

Couple Beads
- Antibody Coupling (AbC) Kit
- Custom Coupling
- LumAvidin® (non-magnetic)
- MagPlex®-TAG™ (pre-coupled by Luminex®)

Optimize
- Volumes
- Concentrations
- Incubation Times
- Cross Reactivity
- Signal
- Sensitivity
- Specificity

Validate
- Known samples
- Standards
- Controls

This chapter covers the initial steps and considerations for developing an xMAP multiplex assay, including general assay design reagents and equipment needed. Additional assay development steps such as bead coupling, optimization and validation are discussed separately in Chapters 4 (Proteomic Applications) and 5 (Genomic Applications).
Chapter 3.1

Assay Design

xMAP® Technology is adaptable to a number of biological assays, including immunoassays, nucleic acid assays and enzyme activity assays. Common immunoassay formats are capture sandwich, competitive, and indirect antibody assays. Nucleic acid assays are hybridization-based where a probe sequence captures a labeled complementary target from your sample reaction. Enzyme activity assays typically involve labeling or cleaving a peptide substrate to introduce or release a fluorescent molecule.

<table>
<thead>
<tr>
<th>Immunoassay</th>
<th>Nucleic Acid</th>
<th>Enzyme Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture sandwich</td>
<td>TAG incorporation</td>
<td>Kinase/Phosphatase selectivity</td>
</tr>
<tr>
<td>Competitive</td>
<td>PCR based</td>
<td></td>
</tr>
<tr>
<td>Indirect assay</td>
<td>Primer extension</td>
<td>Probe ligation</td>
</tr>
</tbody>
</table>

Immunoassays

An immunoassay is a biochemical test that measures the presence or concentration of a macromolecule in a solution through the use of an antibody or immunoglobulin. The macromolecule detected by the immunoassay is often referred to as an “analyte” and is in many cases a protein.

Figure 3 - Common assay formats for immunoassays include (A) capture sandwich assay, requiring capture and detection antibodies to your analyte target (polyclonal capture antibodies should be purified and mono-specific); (B) competitive (antibody) assay, requiring a single antibody and a labeled positive target; and (C) indirect assay (or serology assay), requiring both a target protein and an anti-antibody.
Immunoassays are used for the detection of biological substances, and have become established as one of the most popular analytical techniques applied in clinical and veterinary medicine, drug discovery, and rapidly emerging areas such as biothreat and food safety. Due to the ease of use, accuracy, specificity, and speed, immunoassays are commonly used to measure a large number of hormones, blood products, enzymes, drugs, disease markers, and other biological molecules. Many immunoassays can be performed directly on untreated samples, such as plasma, serum, urine, saliva, and cerebrospinal fluid. Single-analyte ELISA has been an industry standard for decades and has led to more novel techniques such as highly multiplexed immunoassays for measuring potentially hundreds of analytes simultaneously. Such multiplex assays can be used to generate profiles of clinical samples that can facilitate accurate disease diagnoses or prediction of drug responses.

Nucleic acid assays

Multiplex nucleic acid assays require different optimization steps from immunoassays, although some similarities exist. Sensitivity of nucleic acid assays may be affected by the assay chemistry selected, the amount of capture oligonucleotide and the amount of beads used. In order to distinguish similar nucleic acid sequences, standards and controls must be run to confirm that there is minimal cross hybridization and non-specific hybridization between sequences. Depending on whether the purpose of your assay is gene expression, genotyping, or simply sequence detection, there are different requirements for the type of starting nucleic acid used in the assay and the chemistry required to generate reporter molecules. No matter which chemistry is used to generate the reporter molecules, the capture and detection of the reporter molecules is performed as diagrammed in Figure 4.

![Figure 4 - Schematic of nucleic acid assay analysis on Luminex® beads. Each bead has a unique capture sequence specific for a marker sequence. If reporter molecules are generated and captured (bead A), a fluorescence signal is detected. If no reporter molecules are generated and captured (bead a), minimal or background signal is detected.](image)
Chapter 3.2

Reagents and Equipment

While Luminex® has a number of partnerships with other companies for the purchase of a variety of kits, reagents, and instrumentation, a number of products can be purchased directly from Luminex for the development and analysis of protein and genomic assays. These products include reagents, instruments and supplies that can be found on the Luminex web site (www.luminexcorp.com).

At the heart of the Luminex platform’s flexibility and multiplexing capability are Luminex beads. Luminex’s newest generation of xMAP® beads are MagPlex® Microspheres, which are 6.5-micron superparamagnetic beads. The beads are dyed with different ratios of two or three dyes allowing the generation of 500 different colored beads or bead regions for the development of multi-analyte assays up to 500-plex. The surface of these beads are impregnated with iron-containing magnetite particles. This feature allows the use of magnets to rapidly remove the beads from reaction suspensions to speed up processing protocols and to minimize bead loss, resulting in more reproducible data generation.

MagPlex® Microspheres should be purchased from Luminex. The beads should be stored at 4°C and be kept in the dark. They can be used directly from their vials as described in the coupling protocols for the development of different proteomic or genomic assays. MagPlex Microspheres are available at concentrations of 2.5 million and 12.5 million beads/mL and can be ordered in 1 mL and 4 mL vial sizes. Special orders of larger size vials are also available upon request.

MagPlex®-TAG™ Microspheres are MagPlex beads where each bead region is covalently coupled with a unique 24-base oligonucleotide or ‘anti-TAG’ sequence. These beads enable the user to quickly and easily design custom genomic assays by incorporating complementary ‘TAG’ sequences in primers or probes used in assay reactions. This allows reporter molecules generated in the reactions to be hybridized to specific anti-TAG sequences on specific beads regions. For a complete list of the TAG and anti-TAG sequences for each of the 150 available microspheres, visit www.luminexcorp.com.

MagPlex and MagPlex-TAG Microspheres are compatible with all Luminex instruments, including MAGPIX® (up to 50-plex), Luminex® 100/200™ with xPONENT® software (up to 80-plex) and FLEXMAP 3D® (up to 500-plex for MagPlex; up to 150-plex for MagPlex-TAG). Basic reagents for Luminex equipment include Calibration and Verification kits and Sheath or Drive Fluid. The products are also offered in a variety of custom volumes. For additional information on all xMAP reagents, contact your Luminex representative or visit www.luminexcorp.com/Products/ReagentsMicrospheres/.

Note: Bead colors are referred to as “regions” because beads are plotted in different regions of the bead map in the instrument software, based on their dye ratios.

Note: The assays and protocols described in this cookbook are optimized for use with MagPlex or MagPlex-TAG Microspheres unless otherwise noted. If using nonmagnetic MicroPlex™ beads, contact Technical Support or your Luminex Field Application Scientist (FAS) for information on assay modifications needed for non-magnetic beads.
Whether you need to couple your own capture molecules to Luminex beads, or use any of our other bead types, developing a custom assay will require additional reagents and equipment that must be provided by the user. To assist with the development of different types of assays, this xMAP Cookbook is divided into sections for proteomic and genomic based assays. Each of the protocols in the two sections includes lists and recommended sources of reagents, equipment needed and information on troubleshooting and validation. A list of common buffers and equipment required for different xMAP assays can be found in Appendices A and B, and a protocol for automated bead washing is found in Appendix C.
Chapter 4

Proteomic Applications
Chapter 4.1

Development of xMAP® Proteomic Assays

This section provides protocols needed for developing a number of different proteomic assays. These assays can be used for studying immunological responses, detecting concentrations of proteins and other molecules in different samples, for analyzing protein-protein interactions, and for other applications.

Before undertaking the task of developing a new assay, one should review the hundreds of commercial assay kits available through more than 50 licensed Luminex® partners. With dozens of new commercial kits being developed every month, many common biological targets can be found in pre-optimized panels developed by these partners. The xMAP Kit Finder online catalog of research immunoassays is a helpful tool for identifying commercial kits from many Luminex partners and can be found at www.luminexcorp.com/kitfinder.

If there are no commercial kits available for the targets of interests and a new assay must be developed, the first step will be to select an appropriate assay format such as capture sandwich, competitive, or indirect serological/ELISA assay. Once a format has been chosen, the beads can be coupled to the proteins used in the assay.

Assay format will largely depend on what antibodies are available and the size of the target analyte. Consult the literature to determine if any similar assays have already been developed and described. If the assay is already available on another platform, try the same format on the Luminex platform. A capture sandwich format is commonly used for xMAP protein assays (and for ELISA) where the analyte is “sandwiched” between a capture and detection antibody. The capture sandwich format is compatible with a wide variety of target analytes. An indirect format is used for serological assays to measure the amount of antigen-specific antibody present in biological samples. A competitive format is used when the target analyte is of low molecular weight and has only one or two antibody binding epitopes, and if only one antibody is available. Competitive xMAP assays can be developed using either antibody-coupled or antigen-coupled beads and can be multiplexed with the capture sandwich format in the same assay.

In the following sections, a standard carbodiimide coupling protocol is provided which can be used for coupling immunoglobulins, linkers, and other proteins as needed. Additional protocols for the use of these coupled beads for various applications are provided. Each protocol includes information that outlines the concept of the protocol, lists the required reagents, supplies, and equipment needed, and notes any troubleshooting, validation, scaling, or optimization tips.
Chapter 4.2

Protein Coupling

The development of different proteomic applications with xMAP® Microspheres requires the covalent coupling of capture molecules such as antibodies, proteins, or small molecule linkers to the beads. The carbodiimide coupling chemistry takes advantage of approximately 100 million carboxyl groups on each xMAP microsphere. The chemistry of the coupling process involves formation of a covalent bond between primary amines on an antibody, protein, or linker with activated carboxyl groups on the surface of xMAP Microspheres.

The carbodiimide chemistry is a simple two-step process during which microsphere carboxyl groups are first activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride) reagent in the presence of Sulfo-NHS (N-hydroxysulfosuccinimide) to form a sulfo-NHS-ester intermediate. The reactive intermediate is then replaced by reacting with the primary amine of the coupling molecule (antibody, protein, linker or peptide) to form a covalent amide bond.

Protein coupling chemistry

A number of factors can affect the efficiency of the coupling reaction. Some common additives to proteins and buffers that can interfere with coupling include amine-containing compounds such as Tris, BSA, and azide. In addition, glycerol, urea, imidazole, and some detergents may also interfere with the coupling chemistry. If any of these compounds are present in the protein storage buffer, they should be removed from the preparation with a suitable buffer exchange method.

For antibodies, common antibody purification methods that can be used for buffer exchange include Protein A, Protein G, ion exchange, size exclusion, and analyte-specific affinity chromatography. Affinity purification is the method of choice as it reduces nonspecific immunoglobulins and other interfering molecules. In some cases where interfering substances cannot be removed or are in low concentration (such as detergents, azide or urea) a sufficient dilution can be performed to allow efficient coupling to proceed. For other protein or peptide preparations, ion exchange, size exclusion and/or dialysis methods are available to facilitate buffer exchange.
When the molecule to be coupled is in a suitable buffer, the carbodiimide coupling reaction is most efficient at low pH (i.e., pH 5-6). However, for proteins sensitive to lower pH conditions, coupling reactions may be carried out at higher pH to ensure stability and functional conformation of the protein. For capture sandwich assays, monoclonal antibodies should be used for capturing the analyte to the microsphere surface to achieve maximum sensitivity and specificity. If a polyclonal antibody is used as a capture molecule, it should be monospecific and affinity-purified. The optimal amount of capture reagent may vary depending on the reagent used and should be titrated. For antibodies, about 5 μg of antibody per 1 million microspheres performs well. For other proteins the optimum amount to couple (per million beads) will vary depending on the molecular weight and amino acid composition of the protein being coupled. Coupling a peptide may require a chemical linker. Protocols for coupling specific linkers and peptides are included in the chapter titled Other Coupling Moieties.

To determine where reactive groups are on your protein, a number of bioinformatic tools are available to analyze a protein’s sequence, and in some cases its 3D structure. Sites for searching for 3D structures include the NCBI Structure Group (www.ncbi.nlm.nih.gov/Structure/index.shtml), the RSCD Protein Data Bank (www.rcsb.org/pdb/home/home.do) and the SWISS-MODEL Repository (www.expasy.org/proteomics/protein_structure).
Chapter 4.2.1

Carbodiimide Coupling Protocol for Antibodies and Proteins

General guidelines for coupling protein to xMAP® Microspheres

Luminex® has made coupling of antibodies or other proteins easy with the xMAP Antibody Coupling (AbC) Kit. The kit contains all the reagents necessary to covalently couple antibodies (or other proteins) to Luminex® MagPlex® Microspheres in approximately three hours. Alternatively, LumAvidin® Microspheres are non-magnetic microspheres pre-coupled with avidin to allow simple (non-covalent) binding of biotinylated molecules, such as peptides, without having to chemically couple capture molecules.

Whether using the antibody coupling kit or coupling with reagents provided by the user, a summary of the standard coupling protocol can be found below. Once coupled, the stability of coupled microspheres is dependent on a number of factors such as the stability of the coupled protein, buffer composition and other storage conditions. When stored properly, coupled microspheres can be stable for more than one year.

Summary of protocol

1. **Add microspheres to reaction tube**
2. **Wash microspheres with water**
3. **Add monobasic sodium phosphate, sulfo-NHS and EDC solutions**
4. **Incubate for 20 minutes**
5. **Wash microspheres with MES**
6. **Add antibody or protein**
7. **Incubate for 2 hr**
8. **Wash and resuspend microspheres with PBS-TBN**
Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex Microspheres</td>
<td>Luminex</td>
</tr>
<tr>
<td>Antibody/Protein to be coupled</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)</td>
<td>Pierce® 77149 ProteoChem® c1100-100mg</td>
</tr>
<tr>
<td>Sulfo-NHS</td>
<td>Pierce 24510 (500 mg) or 24520 (8 x 2 mg, No-Weigh Format)</td>
</tr>
<tr>
<td>Activation Buffer¹ (0.1 M NaH₂PO₄, pH 6.2)</td>
<td>Sigma® 53139</td>
</tr>
<tr>
<td>Coupling Buffer² (50 mM MES, pH 5.0)</td>
<td>Sigma M2933</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>Phosphate buffered saline (PBS), pH 7.4³</td>
<td>Sigma P3813 Sigma P3563</td>
</tr>
<tr>
<td>PBS-BN buffer⁴</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS–TBN buffer⁴,⁵</td>
<td>Sigma P3813 Sigma A7888 Sigma P9416</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific® 1415-2500 or Eppendorf® Protein LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

¹. Activation can be performed in 50 mM MES, pH 6.0–6.2, with similar results.
². Coupling can be performed in 100 mM MES, pH 6.0, with similar results. For some proteins, better solubility and better coupling may be achieved at a higher coupling pH.
³. Alternative coupling buffer for proteins that do not couple well at pH 5–6.
⁴. Also used as assay buffer.
⁵. Also used as wash buffer.

Protocol 4.2.1: Carbodiimide coupling

1. Resuspend the stock uncoupled microsphere suspension according to the instructions described in the product information sheet provided with your microspheres.
2. Transfer 5.0 × 10⁶ of the stock microspheres to a recommended microcentrifuge tube.
3. Place the tube into a magnetic separator and allow separation to occur for 30 to 60 seconds.
4. With the tube still positioned in the magnetic separator, remove the supernatant. Take care not to disturb the microspheres.
5. Remove the tube from the magnetic separator and resuspend the microspheres in 100 μL dH₂O by vortex and sonication for approximately 20 seconds.
6. Place the tube into a magnetic separator and allow separation to occur for 30 to 60 seconds.
7. With the tube still positioned in the magnetic separator, remove the supernatant. Take care not to disturb the microspheres.

Note: For scaling of coupling reactions, see Scale Up Information Table at the end of this section.
8. Remove the tube from the magnetic separator and resuspend the washed microspheres in 80 μL 100 mM Monobasic Sodium Phosphate, pH 6.2 by vortex and sonication for approximately 20 seconds.

9. Add 10 μL of 50 mg/mL Sulfo-NHS (diluted in dH₂O) to the microspheres and mix gently by vortex.

10. Add 10 μL of 50 mg/mL EDC (diluted in dH₂O) to the microspheres and mix gently by vortex.

11. Incubate for 20 minutes at room temperature with gentle mixing by vortex at 10 minute intervals.

12. Place the tube into a magnetic separator and allow separation to occur for 30 to 60 seconds.

13. With the tube still positioned in the magnetic separator, remove the supernatant. Take care not to disturb the microspheres.

14. Remove the tube from the magnetic separator and resuspend the microspheres in 250 μL of 50 mM MES, pH 5.0 by vortex and sonication for approximately 20 seconds.

15. Repeat steps 13 and 14 for a total of two washes with 50 mM MES, pH 5.0.

16. Remove the tube from the magnetic separator and resuspend the activated and washed microspheres in 100 μL of 50 mM MES, pH 5.0 by vortex and sonication for approximately 20 seconds.

17. Add 25 μg protein to the resuspended microspheres (i.e., 5 μg/1 million microspheres). (Note: 5 μg protein per 1 million beads typically performs well. We recommend titrating up and/or down as needed to achieve optimal assay performance.)

18. Bring total volume to 500 μL with 50 mM MES, pH 5.0.

19. Mix coupling reaction by vortex.

20. Incubate for 2 hours with mixing (by rotation) at room temperature.

21. Place the tube into a magnetic separator and allow separation to occur for 30 to 60 seconds.

22. With the tube still positioned in the magnetic separator, remove the supernatant. Take care not to disturb the microspheres.

23. Remove the tube from the magnetic separator and resuspend the coupled microspheres in 500 μL of PBS-TBN by vortex and sonication for approximately 20 seconds.

24. Optional blocking step – Incubate for 30 minutes with mixing (by rotation) at room temperature. (Note: Perform this step when using the microspheres the same day.)

25. Place the tube into a magnetic separator and allow separation to occur for 30 to 60 seconds.

26. With the tube still positioned in the magnetic separator, remove the supernatant. Take care not to disturb the microspheres.

27. Remove the tube from the magnetic separator and resuspend the microspheres in 1 mL of PBS-TBN by vortex and sonication for approximately 20 seconds.

28. Repeat steps 25 and 26. This is a total of two washes with 1 mL PBS-TBN.

29. Remove the tube from the magnetic separator and resuspend the coupled and washed microspheres in 250-1000 μL of PBS-TBN.

30. Count the number of microspheres recovered after the coupling reaction using a cell counter or hemacytometer.

31. Store coupled microspheres refrigerated at 2-8°C in the dark.

Follow this coupling procedure with Coupling Confirmation (section 4.2.2).
Scale-up Information for Bead Coupling

<table>
<thead>
<tr>
<th>Microspheres</th>
<th>EDC (mg)</th>
<th>Sulfo-NHS (mg)</th>
<th>Activation Volume (μL)</th>
<th>Coupling Volume (mL)</th>
<th>S-NHS (50 mg/mL) (μL)</th>
<th>EDC (50 mg/mL) (μL)</th>
<th># of 96-well plates using 2500 beads/well</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 million</td>
<td>0.5</td>
<td>0.5</td>
<td>100</td>
<td>0.5</td>
<td>10</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>2.5 million</td>
<td>0.5</td>
<td>0.5</td>
<td>100</td>
<td>0.5</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5 million</td>
<td>0.5</td>
<td>0.5</td>
<td>100</td>
<td>0.5</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>10 million</td>
<td>2.5</td>
<td>2.5</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>12.5 million</td>
<td>2.5</td>
<td>2.5</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>50 million</td>
<td>2.5</td>
<td>2.5</td>
<td>500</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>200</td>
</tr>
<tr>
<td>100 million</td>
<td>5</td>
<td>5</td>
<td>500</td>
<td>2</td>
<td>100</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>200 million</td>
<td>5</td>
<td>5</td>
<td>500</td>
<td>2</td>
<td>100</td>
<td>100</td>
<td>800</td>
</tr>
<tr>
<td>600 million</td>
<td>20</td>
<td>20</td>
<td>500</td>
<td>2</td>
<td>400</td>
<td>400</td>
<td>2400</td>
</tr>
</tbody>
</table>

Note: Coupling reactions of 0.5 to 1 mL are performed in 1.5 mL microcentrifuge tubes, and 2 mL coupling reactions are performed in 4 mL microcentrifuge tubes or 15 mL polypropylene centrifuge tubes. See Appendix B for recommended tubes.
Chapter 4.2.2

Coupling Confirmation

Once antibodies or proteins are coupled to xMAP® Microspheres, it is strongly recommended to assess coupling efficiency before proceeding to assay development. The coupled microspheres can be incubated with suitable phycoerythrin (PE)-labeled antibodies specific for the proteins coupled. For example, if a mouse monoclonal was coupled to the beads, a suitable goat, rabbit, or other anti-mouse PE labeled antibody can be used for analysis on a Luminex® instrument. Alternatively, a biotinylated target antigen specific for the coupled antibody may be used and subsequently labeled with streptavidin-R-phycoerythrin (SAPE). Examples of coupling confirmation can be found in de Jager et al.¹

If an antigen or other protein is coupled to the beads, a suitable PE labeled or biotinylated conjugated antibody to the protein can be used. In the case of coupling linkers, the efficiency is determined after the subsequent coupling of the peptide using PE labeled or biotin conjugated antibodies that recognize the peptide. Details are provided in the protocols on coupling peptides to different linkers in the chapter titled Other Coupling Moieties.

Keep in mind that proteins are typically coupled in random orientation as they may have many lysine groups available for coupling. In assays where retention of the conformation or activity of a protein needs to be maintained, functional testing of the coupled protein is also critical during assay development.

Summary of protocol

¹ de Jager et al.
Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (antibody-coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-BN buffer<sup>1</sup></td>
<td>Sigma P3813, Sigma A7888, Sigma P9416</td>
</tr>
<tr>
<td>PBS–TBN buffer<sup>1,2</sup></td>
<td>Sigma P3813</td>
</tr>
<tr>
<td>96 well plate</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>PE or Biotin-labeled anti-species detection Antibody</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® S-866, ProZyme®, Caltag or equivalent</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415–2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

1. Also used as assay buffer.
2. Also used as wash buffer.

A protocol for verifying coupling efficiency is provided below. A dose response increase in MFI should be observed as concentration of labeled detection antibody increases. In general, an antibody coupling should yield at least 10,000 MFI (at standard PMT settings on Luminex® 200™ and FLEXMAP 3D® instruments or on a MAGPIX® instrument) at saturation for optimal use in immunoassays. The maximum MFI for other proteins will vary depending on the detection antibodies used. However, a saturation curve can still be obtained by a detection antibody titration to determine coupling efficiency.

Protocol 4.2.2: Antibody coupling confirmation

1. Select the appropriate antibody-coupled microsphere set or sets.
2. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
3. Prepare a working microsphere mixture by diluting the coupled microsphere stocks to a final concentration of 50 beads/μL in assay buffer.
4. Prepare a solution of phycoerythrin-labeled anti-species IgG detection antibody at 4 μg/mL in assay buffer. Prepare a 1:2 dilution series of that detection antibody solution to a concentration of 0.0625 μg/mL as shown in the following table.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: 50 μL per well of the microsphere solution is required for each reaction (16 wells = 800 μL)

Note: An Excel®-based bead calculator to facilitate determining the method and volumes needed in making the working microsphere mixture can be obtained by contacting Luminex Technical Support.
5. Aliquot 50 μL of the microsphere solution prepared in Step 3 into each well in two columns of the 96-well plate (16 wells total).
6. Add 50 μL of assay buffer, as a blank sample, into the wells in A1 and A2 containing the microsphere solution.
7. Add 50 μL of each of the diluted detection antibody solutions prepared in Step 4 into the appropriate wells (as shown in the plate layout below).

<table>
<thead>
<tr>
<th>Dilution Tube</th>
<th>Volume of PBS-1% BSA</th>
<th>Volume of Detection Antibody</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>-</td>
<td>-</td>
<td>4 μg/mL</td>
</tr>
<tr>
<td>1:2</td>
<td>500 μL</td>
<td>500 μL from Tube 1:1</td>
<td>2 μg/mL</td>
</tr>
<tr>
<td>1:4</td>
<td>500 μL</td>
<td>500 μL from Tube 1:2</td>
<td>1 μg/mL</td>
</tr>
<tr>
<td>1:8</td>
<td>500 μL</td>
<td>500 μL from Tube 1:4</td>
<td>0.5 μg/mL</td>
</tr>
<tr>
<td>1:16</td>
<td>500 μL</td>
<td>500 μL from Tube 1:8</td>
<td>0.25 μg/mL</td>
</tr>
<tr>
<td>1:32</td>
<td>500 μL</td>
<td>500 μL from Tube 1:16</td>
<td>0.125 μg/mL</td>
</tr>
<tr>
<td>1:64</td>
<td>500 μL</td>
<td>500 μL from Tube 1:32</td>
<td>0.0625 μg/mL</td>
</tr>
</tbody>
</table>

8. Mix the reactions gently by pipetting up and down several times with a pipettor.
9. Cover the plate and incubate for 30 minutes at room temperature on a plate shaker.
10. Clip the plate in place on the Luminex Magnetic Plate Separator and rapidly and forcefully invert over a biohazard receptacle to evacuate the liquid from the wells.

Note: For information on the MagPlex Manual Wash Method, please visit the Magnetic Separators page at www.luminexcorp.com.
11. Wash each well with 100 μL of assay buffer by gently pipetting up and down several times with a pipettor, and remove the liquid by using the procedure described in the previous step.
12. Repeat step 11 for a total of 2 washes.
13. Resuspend the microspheres in 100 μL of assay buffer by gently pipetting up and down several times with a pipettor.
14. Analyze 50-75 μL on the Luminex analyzer according to the system manual. An example of typical results is shown below.
Antibody coupling references

General antibody coupling

Antibody coupling confirmation

Antibody coupling kit

Figure 5 – Plot of typical results for anti-species IgG-PE conjugate titration of antibody-coupled microspheres, as measured by a Luminex analyzer.
Chapter 4.3

Common xMAP® Immunoassay Formats

xMAP Microspheres offer a flexible means of developing a range of immunoassays. Antibodies, antigens and proteins are easily coupled to xMAP microspheres to allow capture and quantitation of analytes in a range of sample types.

Figure 6.

A B C

Capture Sandwich Competitive Assay Indirect Serological Assay

Figure 6 - Common assay formats include (A) capture sandwich assay, requiring two monoclonal antibodies to your analyte target; (B) competitive (antibody) assay, requiring a single antibody and a labeled positive target; and (C) indirect antibody assay (or, serology assay), requiring both a target protein and an anti-IgG antibody.

Depending on the availability of antibodies and the type of molecule to be measured, common assay formats include Capture Sandwich, Competitive or Indirect Serological assays. The following sections cover each of these assays in detail, including assay principle and overview, summary of protocol, technical notes, materials needed, step-by-step protocols, and references.
Chapter 4.3.1

Capture Sandwich Immunoassay

The following immunoassay protocol presumes that the user is familiar with general assay development and optimization (including microsphere coupling).

Assay principle and overview

A capture sandwich immunoassay is used to detect an antigen (target) with the use of a capture antibody attached to the surface of a microsphere and a detection antibody that incorporates a fluorescent label, forming a “sandwich.” This assay is commonly used to measure a large number of hormones, blood products, enzymes, drugs, disease markers and other biological molecules. The general steps to performing a sandwich immunoassay with xMAP® Technology are as follows:

Summary of protocol

1. Add antigen-coupled microspheres
2. Add antigen-containing sample
3. Wash microspheres w/ assay buffer
4. Add labeled detection antibody
5. Wash microspheres w/ assay buffer
6. Read 50 μL on Luminex analyzer
Technical notes

- For capture sandwich immunoassays, 2-4 μg/mL detection antibody is usually sufficient; however, up to five-fold more detection antibody may be required for a no-wash assay format. To optimize detection antibody concentration for washed assays, we recommend starting with 4 μg/mL and titrating down to 1 μg/mL by two-fold dilutions.
- The optimal detection antibody concentration will depend on specific reagents and level of multiplexing. Concentrations often need to be increased when increasing the number of multiplexed assays and when converting to a no-wash assay format.
- The reporter concentration should be approximately one and one-half times the concentration of the detection antibody. When using streptavidin-R-phycoerythrin (SAPE) at concentrations >8 μg/mL final concentration in a no-wash format, a dilution or wash step may be required to minimize background fluorescence prior to analysis on the Luminex® instrument.

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (antibody coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-BN buffer¹</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-TBN buffer¹²</td>
<td>Sigma P3813, Sigma A7888, Sigma P9416</td>
</tr>
<tr>
<td>96 well plate</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>PE or Biotin-labeled Detection Antibody</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® S-866, ProZyme®, Caltag or equivalent</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

¹ Also used as assay buffer.
¹² Also used as wash buffer.

For complete equipment and materials list see Appendix B

Protocol 4.3.1: Capture sandwich immunoassay

1. Select the appropriate antibody-coupled microsphere sets.
2. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
3. Prepare a working microsphere mixture by diluting the coupled microsphere stocks to a final concentration of 50 microspheres of each set/μL in assay buffer.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: 50 μL of working microsphere mixture is required for each reaction.
4. Aliquot 50 μL of the working microsphere mixture into the appropriate wells of a 96-well plate.
5. Add 50 μL of assay buffer to each background well.
6. Add 50 μL of standard or sample to the appropriate wells.
7. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
8. Cover the plate and incubate for 30 minutes at room temperature on a plate shaker set to approximately 800 rpm.
9. Place the plate into the magnetic separator and allow separation to occur for 30-60 seconds.
10. Use a multi-channel pipette to carefully aspirate the supernatant from each well. Take care not to disturb the microspheres.
11. Leave the plate in the magnetic separator for the following wash steps:
 a. Add 100 μL assay buffer to each well.
 b. Use a multi-channel pipette to carefully aspirate the supernatant from each well or use the manual inversion wash method. Take care not to disturb the microspheres.
 c. Repeat steps a and b above.
12. Remove the plate from the magnetic separator and resuspend the microspheres in 50 μL of assay buffer by gently pipetting up and down several times using a multi-channel pipettor.
13. Dilute the biotinylated detection antibody to 4 μg/mL in assay buffer.
14. Add 50 μL of the diluted detection antibody to each well.
15. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
16. Cover the plate and incubate for 30 minutes at room temperature on a plate shaker set to approximately 800 rpm.
17. Place the plate into the magnetic separator and allow separation to occur for 30-60 seconds.
18. Use a multi-channel pipette to carefully aspirate the supernatant from each well. Take care not to disturb the microspheres.
19. Leave the plate in the magnetic separator for the following wash steps:
 a. Add 100 μL assay buffer to each well.
 b. Use a multi-channel pipette to carefully aspirate the supernatant from each well or use the manual inversion wash method. Take care not to disturb the microspheres.
 c. Repeat steps a and b above.
20. Remove the plate from the magnetic separator and resuspend the microspheres in 50 μL of assay buffer by gently pipetting up and down several times with a multi-channel pipettor.
21. Dilute SAPE reporter to 4 μg/mL in assay buffer.
22. Add 50 μL of the diluted SAPE to each well.
23. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
24. Cover the plate and incubate for 30 minutes at room temperature on a plate shaker set to approximately 800 rpm.
25. Place the plate into the magnetic separator and allow separation to occur for 30-60 seconds.
26. Use a multi-channel pipette to carefully aspirate the supernatant from each well. Take care not to disturb the microspheres.

Note: An Excel-based bead calculator to facilitate determining the method and volumes needed in making the working microsphere mixture can be obtained by contacting Luminex Technical Support.

Note: 50 μL of diluted detection antibody is required for each reaction.

Note: 50 μL of diluted SAPE is required for each reaction.
27. Leave the plate in the magnetic separator for the following wash steps:
 a. Add 100 μL assay buffer to each well.
 b. Use a multi-channel pipette to carefully aspirate the supernatant from each well or use the manual inversion wash method. Take care not to disturb the microspheres.
 c. Repeat steps a and b above.
28. Remove the plate from the magnetic separator and resuspend the microspheres in 100 μL of assay buffer by gently pipetting up and down several times with a multi-channel pipettor.
29. Analyze 50–75 μL on the Luminex analyzer according to the system manual.

Capture sandwich immunoassay references

Chapter 4.3.2

Competitive Immunoassay

The following immunoassay protocol presumes that the user is familiar with general assay development and optimization (including microsphere coupling).

Assay principle and overview

A competitive immunoassay enables detection of an antigen (target) with the use of a single capture antibody attached to the surface of a microsphere and a competitive, labeled antigen reversibly bound to the antibody (Format 1). Analyte in the sample is detected by competing away the bound, labeled antigen and causing a decrease in signal. The assay format may also be reversed with the antigen attached to the microsphere and the antibody labeled (Format 2). In this case, the analyte in the sample competes away the labeled antibody in solution rather than on the surface of the microsphere. This assay is useful for smaller protein analytes (<3-4 kD) with only a single (or very few) epitopes or when only a single antibody is available. The general steps to performing this type of assay on xMAP® Technology are as follows:

Summary of protocol (format 1)

1. Add capture antibody-coupled microspheres
2. Wash microspheres w/ assay buffer
3. Add antigen-containing sample
4. Read 50 μL on Luminex analyzer
5. Add labeled antigen
For competitive immunoassays, the reporter signal is inversely proportional to the sample target concentration—i.e., the higher the sample target concentration, the lower the reporter signal. A major advantage of a competitive immunoassay is the ability to use crude or impure samples and still selectively bind any target that may be present.

Technical notes

- For Competitive Immunoassay Format 1, we recommend testing a range of competing analyte (0.2 to 5 μg) with increasing concentrations of detection antibody. For Format 2, test a range of detection antibody concentrations starting with an excess (e.g., 4 μg/mL) and titrating down by 2-fold serial dilution. The competitor or detection antibody concentration that yields 70-80% of the maximum signal should provide the largest linear dynamic range for the assay. The reporter concentration should be approximately one and one-half times the concentration of the competitor or detection antibody. When using streptavidin-R-phycoerythrin (SAPE) at concentrations >8 μg/mL in a no wash format, a dilution or wash step may be required to minimize background fluorescence prior to analysis on the Luminex® instrument.

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (antibody- or antigen-coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-BN buffer¹</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-TBN buffer¹²</td>
<td>Sigma P3813, Sigma A7888, Sigma P9416</td>
</tr>
<tr>
<td>96 well plate</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>PE or Biotin-labeled Detection Antibody or Analyte</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® 5-866, ProZyme®, Caltag or equivalent</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

¹. Also used as assay buffer.
². Also used as wash buffer.

For complete equipment and materials list see Appendix B
Protocol 4.3.2.1: Competitive immunoassay (format 1)

1. Select the appropriate antibody-coupled microsphere sets.
2. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
3. Prepare a working microsphere mixture by diluting the coupled microsphere stocks to a final concentration of 100 microspheres of each set/μL in assay buffer. Note: 25 μL of working microsphere mixture is required for each reaction.
4. Dilute the biotinylated competitor to the [IC$_{70}$] or [IC$_{80}$] in assay buffer.
5. Add 25 μL of PBS-1%BSA to each background well.
6. Add 25 μL of standard or sample to the appropriate wells.
7. Add 25 μL of the diluted, biotinylated competitor to each well.
8. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
9. Add 25 μL of the working microsphere mixture to the appropriate wells.
10. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
11. Cover the plate and incubate for 60 minutes at room temperature on a plate shaker at 800 rpm.
12. Dilute the SAPE reporter to 4 μg/mL in assay buffer. Note: 25 μL of diluted SAPE is required for each reaction.
13. Add 25 μL of the diluted SAPE to each well.
14. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
15. Cover the plate and incubate for 30 minutes at room temperature on a plate shaker at 800 rpm.
16. OPTIONAL - Include the following steps if high backgrounds occur:
 a. Carefully remove the supernatant from each well by magnetic plate separator using either manual inversion, manual pipetting or magnetic plate washer. Take care not to disturb the microspheres.
 b. Add 100 μL of wash buffer to each reaction well. Take care not to disturb the microspheres.
17. Repeat step 16 once more for a total of two washes.
18. Bring final volume of each reaction to 100 μL with assay buffer.
19. Analyze 50-75 μL on the Luminex analyzer according to the system manual.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: 25 μL of diluted competitor is required for each reaction.

Note: An Excel-based bead calculator to facilitate determining the method and volumes needed in making the working microsphere mixture can be obtained by contacting Luminex Technical Support.

Technical Note
The [IC$_{70}$] and [IC$_{80}$] are the concentrations of biotinylated competitor that yield 70% and 80% of the maximum obtainable signal, respectively. The [IC$_{70}$] or [IC$_{80}$] should be determined by titration in PBS-1% BSA (or PBS-BN).
Summary of protocol (format 2)

Protocol 4.3.2.2: Competitive immunoassay (format 2)

1. Select the appropriate antigen-coupled microsphere sets.
2. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
3. Prepare a working microsphere mixture by diluting the coupled microsphere stocks to a final concentration of 100 microspheres of each set/μL in assay buffer. 25 μL of working microsphere mixture is required for each reaction.
4. Dilute the biotinylated detection antibody to the \([IC_{70}]\) or \([IC_{80}]\) in assay buffer. 25 μL of biotinylated detection antibody is required for each reaction.
5. Add 25 μL of assay buffer to each background well.
6. Add 25 μL of standard or sample to the appropriate wells.
7. Add 25 μL of the working microsphere mixture to each well.
8. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
9. Add 25 μL of the diluted biotinylated detection antibody to each well.
10. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
11. Cover the plate and incubate for 60 minutes at room temperature on a plate shaker (800 rpm for MagPlex Microspheres).
12. Dilute the SAPE reporter to the appropriate concentration (typically ≥4 μg/mL) in assay buffer. 25 μL of diluted SAPE is required for each reaction.
13. Add 25 μL of the diluted SAPE to each well.
14. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
15. Cover the plate and incubate for 30 minutes at room temperature on a plate shaker (400 rpm for non-magnetic microspheres or 800 rpm for MagPlex Microspheres).
16. OPTIONAL: Include the following steps if high backgrounds occur:
 a. Carefully remove the supernatant from each well by magnetic plate separator using either manual inversion, manual pipetting or magnetic plate washer. Take care not to disturb the microspheres.
 b. Add 100 μL of wash buffer to each reaction well. Take care not to disturb the microspheres.
17. Repeat step 16 once more for a total of two washes.
18. Bring final volume of each reaction to 100 μL with assay buffer.
19. Analyze 50–75 μL on the Luminex analyzer according to the system manual.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: An Excel-based bead calculator to facilitate determining the method and volumes needed in making the working microsphere mixture can be obtained by contacting Luminex Technical Support.

Technical Notes

The \([IC_{70}]\) and \([IC_{80}]\) are the concentrations of detection antibody that yield 70% and 80% of the maximum obtainable signal, respectively. The \([IC_{70}]\) or \([IC_{80}]\) should be determined by titration in assay buffer.

Concentrations of the detection antibodies and SAPE should be optimized. The optimal concentrations tend to be higher than in a washed assay.
Competitive assay references

Chapter 4.3.3

Indirect (Serological) Immunoassay

The following immunoassay protocol presumes that the user is familiar with general assay development and optimization (including microsphere coupling).

Assay principle and overview

An indirect immunoassay enables the detection of an antibody (target) with the use of a capture protein antigen and a detection antibody. This assay is useful for serology assays where serum antibodies are measured to determine infection status, vaccine responses, allergy or autoimmune activity. The general steps to performing a serology immunoassay with xMAP® Technology are as follows:

Summary of protocol

1. Add capture antigen-coupled microspheres
2. Add antibody-containing sample
3. Wash microspheres w/ assay buffer
4. Add labeled detection antibody
5. Wash microspheres w/ assay buffer
6. Read 50 μL on Luminex analyzer
Technical notes

- For Indirect (Serological) immunoassays, 2-4 μg/mL detection antibody is usually sufficient, however up to five-fold more detection antibody may be required for a no-wash assay format. To optimize detection antibody concentration for washed assays, we recommend starting with 4 μg/mL and titrating down to 1 μg/mL by two-fold dilutions. The optimal detection antibody concentration will depend on specific reagents and level of multiplexing. Concentrations often need to be increased when increasing the number of multiplexed assays and when converting to a no-wash assay format.

- The reporter concentration should be approximately one and one-half times the concentration of the detection antibody. When using streptavidin-R-phycoerythrin (SAPE) at concentrations >8 μg/mL final concentration in a no wash format, a dilution or wash step may be required to minimize background fluorescence prior to analysis on the Luminex® instrument.

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (antigen-coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-BN buffer¹</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-TBN buffer¹</td>
<td>Sigma P3813</td>
</tr>
<tr>
<td></td>
<td>Sigma A7888</td>
</tr>
<tr>
<td></td>
<td>Sigma P9416</td>
</tr>
<tr>
<td>96 well plate</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>PE or Biotin-labeled Detection Antibody</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® S-866, ProZyme®, Caltag or equivalent</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500</td>
</tr>
<tr>
<td></td>
<td>or Eppendorf LoBind®</td>
</tr>
<tr>
<td></td>
<td>022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

For complete equipment and materials list see Appendix B

¹ Also used as assay buffer.
² Also used as wash buffer.
Protocol 4.3.3: Indirect (serological) immunoassay

1. Dilute samples and controls using diluent (for example, dilute 1 to 500).
2. Select the appropriate antigen-coupled microsphere sets. Prepare a working microsphere mixture by diluting the coupled microsphere stocks to a final concentration of 50 microspheres of each set/μL in assay buffer.
3. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
4. Aliquot 50 μL of the working microsphere mixture into the appropriate wells.
5. Add 50 μL of diluted controls and diluted samples to the appropriate wells.
6. If available, add 50 μL of standard to the appropriate wells.
7. Cover the plate to protect it from light and incubate for 60 minutes at room temperature on a plate shaker set to approximately 800 rpm.
8. Place the plate into the magnetic separator and allow separation to occur for 30-60 seconds.
 a. Carefully remove the supernatant from each well by magnetic plate separator using either manual inversion, manual pipetting or magnetic plate washer. Take care not to disturb the microspheres.
 b. Add 100 μL of wash buffer to each reaction well.
9. Repeat step 8 once more for a total of two washes.
10. Remove the plate from the magnetic separator and add 100 μL of biotinylated detection antibody to each well of the plate.
11. Cover the plate to protect it from light and incubate for 30 minutes at room temperature on a plate shaker set to approximately 800 rpm.
12. Place the plate into the magnetic separator and allow separation to occur for 30-60 seconds.
 a. Carefully remove the supernatant from each well by magnetic plate separator using either manual inversion, manual pipetting or magnetic plate washer. Take care not to disturb the microspheres.
 b. Add 100 μL of wash buffer to each reaction well.
13. Repeat step 12 once more for a total of two washes.
14. Remove the plate from the magnetic separator and add 100 μL of reporter conjugate (e.g. SAPE) to each well of the plate.
15. Cover the plate to protect it from light and incubate for 30 minutes at room temperature on a plate shaker set to approximately 800 rpm.
16. Place the plate into the magnetic separator and allow separation to occur for 60 seconds.
 a. Carefully remove the supernatant from each well by magnetic plate separator using either manual inversion, manual pipetting or magnetic plate washer. Take care not to disturb the microspheres.
 b. Add 100 μL of wash buffer to each reaction well.
17. Repeat step 16 once more for a total of two washes.
18. Remove the plate from the magnetic separator and add 100 μL of wash buffer to each well of the plate.
19. Resuspend the microspheres by pipetting up and down several times with a multichannel pipettor or placing the plate onto a plate shaker for approximately 15 seconds.
20. Analyze 50-75 μL on the Luminex analyzer according to the system manual.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: 50 μL of working microsphere mixture is required for each reaction.

Note: An Excel-based bead calculator to facilitate determining the method and volumes needed in making the working microsphere mixture can be obtained by contacting Luminex Technical Support.

Note: Many standards are supplied prediluted at working concentration and do not require further dilution.

Note: Directly PE-conjugated anti-species antibody may be used for detection in place of a biotinylated detection antibody and SAPE. PE-conjugated anti-species detection antibodies are commercially available from Jackson ImmunoResearch Laboratories, Rockland Immunochemicals, or equivalent.
Indirect immunoassay references

Combined Capture Sandwich and Competitive Immunoassay

The following immunoassay protocol presumes that the user is familiar with general assay development and optimization (including microsphere coupling).

Assay principle and overview

Competitive Immunoassays can be multiplexed with Capture Sandwich Immunoassays, adding versatility to your multiplex assays. The general steps to performing a combined capture sandwich and competitive immunoassay with xMAP® Technology are as follows:

Summary of protocol

1. **Add antigen- and antibody-containing sample and diluted competitor**
2. **Wash microspheres w/ assay buffer**
3. **Add capture antibody- and/or antigen-coupled microspheres**
4. **Read 50 μL on Luminex® analyzer**
5. **Add labeled detection antibody**
Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (antibody- or antigen-coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-BN buffer1</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-TBN buffer12</td>
<td>Sigma P3813, Sigma A7888, Sigma P9416</td>
</tr>
<tr>
<td>96 well plate</td>
<td>See Appendix B</td>
</tr>
<tr>
<td>PE or Biotin-labeled Detection Antibody</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® S-866, ProZyme®, Caltag or equivalent</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH2O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

1. Also used as assay buffer.
2. Also used as wash buffer.

Protocol 4.3.4: Combined capture sandwich and competitive immunoassay

1. Select the appropriate antibody- and/or antigen-coupled microsphere sets.
2. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
3. Prepare a working microsphere mixture by diluting the coupled microsphere stocks to a final concentration of 500 microspheres of each set/μL in assay buffer. 5 μL of working microsphere mixture is required for each reaction.
4. Dilute the biotinylated competitor to the [IC70] or [IC80] in assay buffer. 5 μL of diluted competitor is required for each reaction.
5. Add 10 μL of assay buffer to each background.
6. Add 10 μL of standard or sample to the appropriate wells.
7. Add 5 μL of the diluted competitor to each well.
8. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
9. Aliquot 5 μL of the working microsphere mixture to each well.
10. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
11. Cover the filter plate and incubate for 60 minutes at room temperature on a plate shaker (800 rpm for MagPlex Microspheres).
12. Dilute the biotinylated detection antibody to the appropriate concentration in assay buffer. 10 μL of diluted detection antibody is required for each reaction.
13. Add 10 μL of the diluted detection antibody to each well.
14. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: An Excel-based bead calculator to facilitate determining the method and volumes needed in making the working microsphere mixture can be obtained by contacting Luminex Technical Support.
15. Cover the plate and incubate for 60 minutes at room temperature on a plate shaker (800 rpm for MagPlex Microspheres).
16. Dilute the SAPE reporter to the appropriate concentration (typically ≥10–12 μg/mL) in assay buffer. 10 μL of diluted SAPE is required for each reaction.
17. Add 10 μL of the diluted SAPE to each well.
18. Mix the reactions gently by pipetting up and down several times with a multi-channel pipettor.
19. Cover the plate and incubate for 30 minutes at room temperature on a plate shaker (800 rpm for MagPlex Microspheres).
20. Bring final volume of each reaction to 100 μL with assay buffer.
21. OPTIONAL: Include the following steps if high backgrounds occur:
 a. Carefully remove the supernatant from each well by magnetic plate separator using either manual inversion, manual pipetting or magnetic plate washer. Take care not to disturb the microspheres.
 b. Add 100 μL of wash buffer to each reaction well. Take care not to disturb the microspheres.
22. Repeat step 21 once more for a total of two washes.
23. Bring final volume of each reaction to 100 μL with assay buffer.
24. Analyze 50–75 μL on the Luminex® analyzer according to the system manual.

Technical Notes
The [IC\textsubscript{70}] and [IC\textsubscript{80}] are the concentrations of detection antibody that yield 70% and 80% of the maximum obtainable signal, respectively. The [IC\textsubscript{70}] or [IC\textsubscript{80}] should be determined by titration in assay buffer.

Concentrations of biotinylated competitors, detection antibodies, and SAPE should be optimized. The optimal concentrations tend to be higher than in a washed assay.

If high backgrounds are observed, a final post-labeling wash step may be performed just prior to analysis.
Chapter 4.4

Other Coupling Moieties

Peptides, phospholipids, and other small molecules can be directly coupled to the microsphere surface but may be more efficiently accomplished through modification of the small molecule or the microsphere to provide adequate spacing from the microsphere surface. This can be done using a linker or carrier protein attached to the small molecule, which can then be coupled to the microsphere surface using the standard one-step carbodiimide chemistry. If the small molecule is available in a biotinylated form, it can be bound to LumAvidin® Microspheres where the avidin provides spacing from the microsphere surface.\(^1\,^2\,^3\)

Luminex® recommends, in the following order

1. Couple molecules >10 kD directly without using a linker.
2. Couple peptides via a carrier protein: Conjugating your small molecule to a carrier protein such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), or thyroglobulin (TG) may be done using commercially available cross-linking reagents, followed by coupling the peptide-carrier protein conjugate to the beads using our standard protein coupling protocol.
3. Biotinylate the peptide and bind it to LumAvidin beads (non-magnetic) - Your capture peptide may be available in biotinylated form, or may be easily biotinylated using commercially available reagents. In this case the detection reagent must be directly conjugated with PE.
4. Modify the microsphere surface with adipic acid dihydrazide (ADH) or 4-(4-N-Maleimidophenyl)butyric acid hydrazide hydrochloride (MPBH) and couple the peptide via carboxyl or sulfhydryl groups using EDC.

Other coupling moiety references

Chapter 4.4.1

Binding Biotinylated Peptides to LumAvidin® Microspheres

A sample protocol for binding biotinylated molecules to LumAvidin® Microspheres is described below. However, with this approach a biotin–streptavidin system cannot be used for reporter labeling and an alternative reporter labeling method, such as a direct conjugation of PE to the detection reagent, would be necessary.

Summary of protocol

Add LumAvidin Microspheres → Wash microspheres w/ buffer → Add PBS-BSA blocking buffer

Add biotinylated peptide → Incubate 30 minutes → Wash and resuspend microspheres w/ buffer

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>LumAvidin Microspheres</td>
<td>Luminex®</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>Biotin conjugated molecule</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>PBS-BN buffer¹</td>
<td>Sigma P3688</td>
</tr>
<tr>
<td>PBS-TBN buffer¹</td>
<td>Sigma P3813</td>
</tr>
<tr>
<td></td>
<td>Sigma A7888</td>
</tr>
<tr>
<td></td>
<td>Sigma P9416</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500</td>
</tr>
<tr>
<td></td>
<td>Eppendorf LoBind®</td>
</tr>
<tr>
<td></td>
<td>022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

¹ Also used as assay buffer.
² Also used as wash buffer.

For complete equipment and materials list see Appendix B
Protocol 4.4.1: Coupling biotinylated peptides to LumAvidin Microspheres

1. Resuspend the stock LumAvidin microsphere suspension according to the instructions described in the product information sheet provided with your microspheres.
2. Transfer 1.0×10⁵ of the stock microspheres to a recommended microcentrifuge tube.
3. Pellet the stock microspheres by microcentrifugation at ≥8000 g for 1-2 minutes and remove supernatant.
4. Remove the supernatant and resuspend the pelleted microspheres in 250 μL of PBS–BSA by vortex and sonication for approximately 20 seconds.
5. Dilute the biotin-conjugated molecule in PBS–BSA. The optimal concentration should be determined by titration in the 4–4000 nM range.
6. Add 250 μL of the biotin-conjugated molecule solution to the microsphere suspension and mix immediately by vortex.
7. Incubate for 30 minutes with mixing (by rotation) at room temperature.
8. Pellet the bound microspheres by microcentrifugation at ≥8000 g for 1-2 minutes and remove supernatant.
9. Resuspend the pelleted microspheres in 500 μL of blocking/storage buffer (PBS-BN or PBS-TBN) by vortex.
10. Repeat steps 8 and 9 for a total of two washes with blocking/storage buffer.
11. Remove the supernatant and resuspend the microspheres in 250-1000 μL blocking/storage buffer by vortex and sonication for approximately 20 seconds.
12. Store the bound LumAvidin microspheres refrigerated at 2–8 °C in the dark.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.
Chapter 4.4.2

Modification of Microspheres with ADH

Adipic acid dihydrazide (ADH) is a suitable chemical spacer for extending the peptide away from the surface of xMAP® Microspheres for optimum reactivity with sample and reagents. ADH provides a 10-atom spacer with an active amine group for coupling to peptide carboxyls. A sample protocol for modifying xMAP Microspheres with ADH is described below.

Summary of protocol

Add uncoupled microspheres → Wash microspheres w/ coupling buffer → Add ADH

Add EDC → Incubate 1 hour → Wash and resuspend microspheres w/ coupling buffer

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres</td>
<td>Luminex®</td>
</tr>
<tr>
<td>Adipic acid dihydrazide (ADH)</td>
<td>Sigma A0368</td>
</tr>
<tr>
<td>Coupling Buffer (0.1 M MES, pH 6.0)</td>
<td>Sigma M2933</td>
</tr>
<tr>
<td>1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)</td>
<td>Pierce 77149</td>
</tr>
<tr>
<td>PBS pH7.4</td>
<td>See Appendix A</td>
</tr>
<tr>
<td>Storage Buffer (PBS-TBN buffer)</td>
<td>Sigma P3813</td>
</tr>
<tr>
<td></td>
<td>Sigma A7888</td>
</tr>
<tr>
<td></td>
<td>Sigma P9416</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

For complete equipment and materials list see Appendix B
Protocol 4.4.2: Modification of microspheres with adipic acid dihydrazide (ADH)

1. Resuspend the stock microsphere suspension according to the instructions described in the product information sheet provided with your microspheres.
2. Remove an aliquot of 25×10^6 of microspheres and pellet by centrifugation at ≥ 4000 g for 2 min (or by using a magnetic separator) and remove supernatant.
3. Resuspend the pelleted microspheres in 1 mL of 0.1 M MES, pH 6.0, by vortex and sonication for approximately 20 seconds.
4. Transfer the resuspended microspheres to a recommended microcentrifuge tube and pellet the microspheres by microcentrifugation at ≥ 8000 g for 1-2 minutes (or by using a magnetic separator) and remove supernatant.
5. Resuspend the microspheres in 1 mL of 35 mg/mL ADH (diluted in 0.1 M MES, pH 6.0) by vortex.
6. Add 200 μL of 200 mg/mL EDC (prepared immediately before use in 0.1 M MES, pH 6.0) and mix by vortex.
7. Incubate for 1 hour with mixing (by rotation) at room temperature.
8. Pellet the microspheres by microcentrifugation at ≥ 8000 g for 1-2 minutes (or by using a magnetic separator) and remove supernatant.
9. Resuspend the pelleted microspheres in 1 mL of 0.1 M MES, pH 4.5, by vortex.
10. Pellet the microspheres by microcentrifugation at 8000 g for 1-2 minutes (or by using a magnetic separator) and remove supernatant. Repeat for a total of 3 washes with 1 mL of 0.1 M MES, pH 4.5.
12. Resuspend the ADH-modified microspheres in 1 mL of 0.1 M MES, pH 4.5, and store refrigerated at 2-8 °C in the dark.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.
Chapter 4.4.3

Coupling Peptides to ADH-Modified Microspheres

Adipic acid dihydrazide (ADH) is a suitable chemical spacer for extending the peptide away from the surface of xMAP® Microspheres for optimum reactivity with sample and reagents. A sample protocol for coupling peptides to ADH-modified microspheres is described below.

Summary of protocol

Add ADH-coupled microspheres → Wash microspheres w/ buffer → Add peptide → Add EDC → Incubate 2 hours → Wash and resuspend microspheres w/ buffer

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (ADH-coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>Protein to couple</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>Wash Buffer (0.1 M MES, pH 6.0)</td>
<td>Sigma M2933</td>
</tr>
<tr>
<td>1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)</td>
<td>Pierce 77149 ProteoChem c1100-100mg</td>
</tr>
<tr>
<td>Wash Buffer (PBS-TBN buffer)</td>
<td>Sigma P3813 Sigma A7888 Sigma P9416</td>
</tr>
<tr>
<td>PBS pH7.4</td>
<td>See Appendix A</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

For complete equipment and materials list see Appendix B
Protocol 4.4.3: Coupling peptides to ADH-modified microspheres

1. Resuspend stock ADH-modified microsphere suspension by vortex and sonication (15-30 seconds).

2. Remove an aliquot of 25×10^6 ADH microspheres and pellet by centrifugation at $\geq 8000 \times g$, 1-2 minutes (or by using a magnetic separator) and remove supernatant.

3. Wash once with 1 mL 0.1 M MES, pH 6.0 and pellet by centrifugation at $\geq 8000 \times g$, 1-2 minutes (or by using a magnetic separator) and remove supernatant, and resuspend ADH microspheres in 100 μL 0.1 M MES, pH 6.0, vortex.

4. Add 250 μg protein to ADH microspheres and adjust volume to 500 μL with 0.1 M MES, pH 6.0.

5. Add 50 μL 200 mg/mL EDC (prepared immediately before use in 0.1 M MES, pH 6.0), vortex.

6. Incubate 2 hours at room temperature with rotation (protect from light).

7. Pellet by centrifugation at $\geq 8000 \times g$, 1-2 minutes or by using a magnetic separator and remove supernatant, resuspend coupled microspheres in 1 mL PBS, pH and vortex.

8. Pellet by centrifugation at $\geq 8000 \times g$, 1-2 minutes, or by using a magnetic separator and remove supernatant, wash twice with 1 mL PBS-TBN.

9. Resuspend coupled microspheres in 1 mL PBS-TBN.

10. Count microsphere suspension by hemacytometer.

*Calculation: Total microspheres = count (1 corner 4x4 section) x $(1 \times 10^4) \times (dilution \ factor) \times (resuspension \ volume \ in \ mL)$

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.
Chapter 4.4.4

Modification of Microspheres with MPBH

4-(4-N-Maleimidophenyl)butyric acid hydrazide hydrochloride (MPBH) is a suitable chemical spacer for extending the peptide away from the surface of xMAP® Microspheres for optimum reactivity with sample and reagents. MPBH provides an 8-atom spacer with a reactive maleimide group for coupling to cysteine sulfhydryls. A sample protocol for modifying xMAP Microspheres with MPBH is described below.

Summary of protocol

1. Add uncoupled microspheres
2. Wash microspheres with buffer
3. Add MPBH
4. Incubate 1 hour
5. Wash and resuspend microspheres with buffer
6. Add EDC

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres</td>
<td>Luminex®</td>
</tr>
<tr>
<td>4-(4-N-Maleimidophenyl)butyric acid hydrazide hydrochloride (MPBH)</td>
<td>Pierce 22305</td>
</tr>
<tr>
<td>0.1 M MES, pH 6.0</td>
<td>Sigma M2933</td>
</tr>
<tr>
<td>DMSO</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)</td>
<td>Pierce 77149</td>
</tr>
<tr>
<td>0.1 M MES, pH 4.5</td>
<td>Sigma M2933</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

For complete equipment and materials list see Appendix B
Protocol 4.4.4: Modification of microspheres with MPBH (maleimide)

1. Resuspend the stock microsphere suspension according to the instructions described in the product information sheet provided with your microspheres.
2. Remove an aliquot of 25×10^6 of microspheres and pellet by centrifugation at ≥ 4000 g for 2 min (or by using a magnetic separator) and remove supernatant.
3. Resuspend the pelleted microspheres in 1 mL of 0.1 M MES, pH 6.0, by vortex and sonication for approximately 20 seconds.
4. Transfer the resuspended microspheres to a recommended microcentrifuge tube and pellet the microspheres by microcentrifugation at ≥ 8000 g for 1–2 minutes (or by using a magnetic separator) and remove supernatant.
5. Dissolve MPBH at 80 mM (28.3 mg/mL) with DMSO.
6. Dilute dissolved MPBH to 16 mM (5.7 mg/mL) with 0.1 M MES, pH 6.0.
7. Resuspend the microspheres in 250 μL of diluted MPBH by vortex.
8. Add 100 μL of 20 mg/mL EDC (prepared immediately before use in 0.1 M MES, pH 6.0) and mix by vortex.
9. Incubate for 1 hour with mixing (by rotation) at room temperature.
10. Add 1 mL of 0.1 M MES, pH 4.5, and mix by vortex.
11. Pellet the microspheres by microcentrifugation at ≥ 8000 g for 1–2 minutes (or by using a magnetic separator) and remove supernatant.
12. Resuspend the pelleted microspheres in 1 mL of 0.1 M MES, pH 4.5 by vortex and pellet by microcentrifugation at ≥ 8000 g for 1–2 minutes (or by using a magnetic separator) and remove supernatant.
13. Repeat step 14 for a total of 2 washes with 1 mL of 0.1 M MES, pH 4.5.
14. Resuspend the MPBH-modified microspheres in 1 mL of 0.1 M MES, pH 4.5, and store refrigerated at 2–8 °C in the dark.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.
Chapter 4.4.5

Coupling Peptides to Maleimide-Modified Microspheres

A maleimide-containing linker, such as MPBH, is suitable for extending the free terminal cysteine-containing peptide away from the surface of xMAP® Microspheres for optimum reactivity with sample and reagents. A sample protocol for coupling peptides to MPBH-modified xMAP Microspheres is described below.

Summary of protocol

Add MPBH-coupled microspheres → Wash microspheres w/ buffer → Add peptide

Incubate 1 hour → Wash and resuspend microspheres w/ buffer

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (MBPH-modified)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>Peptide to couple</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>100 mM Tris, pH 7.4</td>
<td>See Appendix A</td>
</tr>
<tr>
<td>Assay/Wash Buffer (PBS, 1% BSA)</td>
<td>See Appendix A</td>
</tr>
<tr>
<td>Storage Buffer (PBS-TBN)</td>
<td>Sigma P3813</td>
</tr>
<tr>
<td></td>
<td>Sigma A7888</td>
</tr>
<tr>
<td></td>
<td>Sigma P9416</td>
</tr>
<tr>
<td>0.1M Sodium Phosphate, 50mM NaCl pH 7.0</td>
<td>See Appendix A</td>
</tr>
<tr>
<td>1.5 mL microcentrifuge tubes</td>
<td>USA Scientific 1415-2500</td>
</tr>
<tr>
<td></td>
<td>or Eppendorf LoBind®</td>
</tr>
<tr>
<td></td>
<td>022431081</td>
</tr>
<tr>
<td>Disposable pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized water (ddH₂O)</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>
Protocol 4.4.5: Coupling peptides to maleimide-modified microspheres

1. Resuspend stock maleimide-modified microsphere suspension by vortex and sonication (15-30 seconds).
2. Remove an aliquot of 1 x 10^5 maleimide microspheres and pellet by centrifugation at ≥8000 x g, 1-2 minutes (or by using a magnetic separator) and remove supernatant.
3. Resuspend maleimide microspheres at 1 x 10^5/mL in 0.1 M Sodium Phosphate, 50 mM NaCl, pH 7.0 by vortex.
4. Aliquot 1 x 10^4 microspheres to each coupling reaction (100 μL).
5. Add peptide (100 μL, in 100 mM Tris, pH 7.4) to each 1 x 10^4 microsphere reaction (see below).
6. Incubate 1 hour at room temperature with shaking (protect from light).
7. Pellet by centrifugation at ≥8000 x g, 1-2 minutes (or by using a magnetic separator) and remove supernatant.
8. Wash twice with assay buffer, (200-500 μL).
9. Resuspend coupled microspheres in PBS-TBN.

Peptide Coupling Titration

<table>
<thead>
<tr>
<th>Peptide Concentration</th>
<th>nmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.5</td>
</tr>
<tr>
<td>2</td>
<td>1.65</td>
</tr>
<tr>
<td>3</td>
<td>0.165</td>
</tr>
<tr>
<td>4</td>
<td>0.0165</td>
</tr>
<tr>
<td>5</td>
<td>0.00165</td>
</tr>
<tr>
<td>6</td>
<td>0.000165</td>
</tr>
<tr>
<td>7</td>
<td>0.0000165</td>
</tr>
</tbody>
</table>

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.
Chapter 4.5

Optimization of Immunoassays

Multiplex immunoassays offer a number of advantages over monoplex assays, but these robust assays require that several questions must be addressed during optimization. For multiplex immunoassays, the effective biological range of each analyte must be considered to ensure that reporter fluorescence will fall into the dynamic range of your assay. Monoplex assays address this by serial dilution of the sample, but a multiplex assay must take a different approach. Some analytes may exist in such a low range of concentrations that a more sensitive assay is needed for that analyte, while another analyte in the same multiplex assay may be abundant and therefore require a lower-sensitivity assay. Assay sensitivity can be affected by the affinity of the capture antibody, the abundance of the capture antibody and the amount of capture beads used for that analyte.

A higher affinity antibody for capture and/or detection may improve the lower limit of detection (LLOD) for an assay, whereas a lower affinity antibody may improve the upper limit of detection (ULOD) by extending the linear dynamic range for an assay. Decreasing the amount of antibody coupled to the beads can also improve sensitivity by improving linearity at low analyte concentrations. Conversely, increasing the amount of capture antibody can increase the signal for an assay but may provide less linearity at low analyte concentrations. For multiplexing assays with widely disparate concentration ranges, increasing the number of beads per set or using a weaker reporter for the high concentration analytes can bring these assays into the detectable dynamic range while allowing a minimal sample dilution to ensure optimal sensitivity for the low concentration analytes.

Another consideration for polystyrene microsphere-based immunoassays is the biological matrix and non-specific binding. Serum samples typically have extraneous proteins that may non-specifically bind to polystyrene and other materials. xMAP® Microspheres are polystyrene beads that appear relatively smooth under a microscope, but on a molecular level have irregular, porous surfaces. Microsphere pores range in size from 100 to 2000 angstroms, allowing them to trap proteins, which typically range from 50 to 100 angstroms in diameter. Microsphere assays can employ blocking agents optimized for each biological matrix to reduce non-specific binding of non-target molecules.

Users must ensure that the optimum amount of capture molecule is bound to the microsphere and that capture reagent pairs allow maximum binding and detection capacity. For capture sandwich immunoassays, it is important to confirm that the pair of antibodies used bind to different epitopes. One advantage of multiplexing is that it can facilitate the screening of candidate capture and detection reagents. For example, several different potential capture antibodies for a particular analyte can each be coupled to a different microsphere set and then tested in multiplex with the individual candidate detection antibodies and analytes. This allows rapid identification of the best-performing capture and detection antibody pair for a particular analyte.

TIP

High-quality reagents are particularly important in multiplex assays, where contamination by a single component may affect results of many assays. When possible, consider additional purification or filtration steps for oligonucleotides, antibodies, peptides and buffers.
Both polyclonal and monoclonal antibodies can be used for detection, but monoclonal antibodies should be specific for a different epitope than the capture antibody or can be used if they are directed to a repeating epitope on the analyte. Detection antibodies are typically biotinylated to use with streptavidin-R-phycoerythrin (SAPE) as the reporter but detection antibodies may also be directly conjugated to PE, which eliminates the need for a separate reporter labeling step in the assay protocol.

General immunoassay tips

Coupling tips
- Coupling should be allowed to proceed for 2 hours with end-over-end mixing on a rotator.
- For scaling up to 50-600 million microspheres per coupling reaction, couple in 2 mL using a 15 mL polypropylene centrifuge tube or a 4 mL microcentrifuge tube. Place 15 mL centrifuge tubes at a 33-45 degree angle in a tube rack and mix on a plate rotator for the 2 hour coupling incubation.
- After washing, allow microspheres to block overnight in Blocking/Storage Buffer at 4°C in the dark if possible.
- Too much antibody in coupling reactions may lead to passive adsorption and can manifest as a very high signal initially, with continued decline over time as the antibody becomes detached. Additionally cross-reactivity can occur if beads are stored as a multiplex.

Assay tips
- Run at least 2 background samples.
- Run all samples at least in duplicate if possible whenever sample allows.
- Minimize the presence of detergents in samples. Some antibodies may be sensitive to detergents, even at low concentrations (e.g., 0.1% SDS).
• Dilute concentrated biological samples 1:5 to overcome matrix (serum) effects that can interfere with analysis of the microspheres. If samples cannot be diluted at least 1:5, try using a small initial reaction volume and diluting the final reaction prior to analysis.
• For Capture Sandwich and Indirect (Serological) immunoassays, 2-4 μg/mL detection antibody is usually sufficient.
• Up to five-fold more detection antibody may be required for a no-wash assay format.
• The optimal detection antibody concentration will depend on specific reagents and level of multiplexing. Concentrations often need to be increased when increasing the number of multiplexed assays and when converting to a no wash assay format.
• For Competitive Immunoassay using antibody-coupled beads (Format 1, see chapter 4.3.2), we recommend testing a range of competing analyte (0.2 to 5 μg) with increasing concentrations of detection antibody. For antigen-coupled beads (Format 2, see chapter 4.3.2), test a range of detection antibody concentrations starting with an excess (e.g., 4 μg/mL) and titrating down by 2-fold serial dilution. The competitor or detection antibody concentration that yields 70-80% of the maximum signal should provide the largest linear dynamic range for the assay.
• The reporter concentration should be approximately one and one-half times the concentration of the detection antibody.
• Use SAPE as your reporter molecule (gives highest signal of all the dyes we have compared).
• Use either PBS-1%BSA or PBS-TBN as the assay buffer.
• When using SAPE at >8 μg/mL final concentration in a no wash assay, a dilution or post-labeling wash step may be required to minimize background fluorescence prior to analysis on the Luminex® instrument.

Factors affecting multiplex assays

Assay dynamic range, cross-reactivity and biological matrix are factors that need to be uniquely and specifically addressed in multiplex assays in order to ensure optimal results. Understanding the biological range of each analyte, the binding specificity of assay reagents and the unique makeup of your sample (plasma, culture media, urine, etc.) allows you to develop the most effective multiplex assay.

Assay conditions, such as buffer system, blocking agents, sample volume and dilution, total reaction volume, number of microspheres per reaction (2000–5000 per region per well), concentration of capture reagent for coupling, detection antibody and reporter concentration, assay format (washed vs. unwashed), and incubation times should be optimized to provide best results according to the specific assay requirements. The final assay performance should be evaluated and validated with known samples. Concentrated biological samples and samples of a highly complex nature, such as serum, plasma, or tissue lysates, should be diluted at least 1:5 to prevent interference or microsphere agglutination from matrix effects. Any reagents that show interference, cross-reactivity, or poor performance should be replaced.

Optimization of assay performance and meeting requirements for sensitivity, dynamic range, ease of use, and time to result should be kept in mind when developing the multiplexed assay. These factors and others are described in more detail below.
Coupling optimization

To improve the sensitivity of an assay, try using a higher affinity antibody for capture and/or detection. Sensitivity may also be improved by decreasing the amount of antigen or antibody coupled to the microspheres and decreasing the detection antibody concentration. The median fluorescent signal will tend to be lower and saturate at a lower analyte concentration but with improved linearity at lower analyte concentrations.

To increase the median fluorescent signal of an assay, try increasing the amount of antigen or antibody coupled to the microspheres and using the detection antibody at 70-80% saturating concentration. The median fluorescent signal will tend to be higher and saturate at higher analyte concentration but with less linearity at lower analyte concentrations.

Using a lower affinity antibody for capture and/or detection may also increase the upper limit of detection by extending the linear dynamic range of the assay.

An example of these effects is shown in Figure 12.

Figure 12.

Figure 12 - (A) Antibody Coupling Titration. Capture antibody was coupled to individual microsphere sets at 0.2, 1, 5 and 25 µg/1 million microspheres. Coupling efficiency was assessed using the Coupling Confirmation assay protocol as described in Protocol 4.2.2. (B) Functional Assay. Assay performance was assessed by a standard curve using the Capture Sandwich Immunoassay protocol as described in Protocol 4.3.1.
To achieve both maximum sensitivity and a broad dynamic range for an assay, try coupling different amounts of the antigen or antibody (or antibodies of different affinities) to different bead sets and/or using a combination of detection antibodies to generate a multiplexed standard curve. See Figure 13.

Figure 13.

For multiplexing assays with widely disparate concentration ranges, increasing the number of beads per set or using a weaker reporter for the high concentration analytes can bring these assays into the detectable dynamic range while allowing a minimal sample dilution to ensure optimal sensitivity for the low concentration analytes.

Amount of detection antibody

Multiplexed microspheres should be analyzed with individual analytes and multiplexed detection antibodies to determine sensitivity and detect interference between the various detection antibodies. The optimal detection antibody concentration will vary with the specific reagent and should be determined by titration (e.g., two-fold serial dilution from 4 to 1 μg/mL), but generally, 2-4 μg/mL is adequate. Detection antibody concentrations may need to be increased in multiplex as compared to the concentration used in monoplex due to interactions between various detection antibodies.

In general, as the level of multiplexing increases, the amount needed for each detection antibody may also increase. In unwashed assay formats, detection antibody concentrations may need to be increased by up to as much as five-fold to compensate for excess unbound analyte in the supernatant. Typically, reporter fluorophore (SAPE) concentration should be one and one-half to two times the concentration of detection antibody. Final concentrations above 8 μg/mL of SAPE may interfere with the background subtraction performed by the analyzer and thus may require a post-labeling wash step.
Cross-reactivity

If cross-reactivity between antibodies for different targets is observed, it may be necessary to replace with other reagents. Selecting other antibodies pre-screened during coupling optimization steps may be required. Multiplexed assays should be tested for specificity and cross-reactivity with (see illustration below):

1. individual analytes and corresponding reporter antibodies (to determine if analytes cross-react with non-target beads)
2. individual analytes and multiplexed detection antibodies (to determine if reporter antibodies cross-react with non-target analytes)
3. multiplexed analytes and multiplex detection antibodies (to determine sensitivity and to confirm there is no cross-reactivity or interference in the fully multiplexed assay).

Sample cross-reactivity protocol

Figure 14 - 3-plex cytokine assay

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplexed Beads</td>
<td>Multiplexed Beads</td>
<td>Multiplexed Beads</td>
</tr>
<tr>
<td>IL-4</td>
<td>IL-6</td>
<td>IL-8</td>
</tr>
<tr>
<td>Detection</td>
<td>Detection</td>
<td>Detection</td>
</tr>
<tr>
<td>IL-4</td>
<td>IL-6</td>
<td>IL-8</td>
</tr>
</tbody>
</table>

Test 1 is for individual analytes and corresponding reporter antibodies to determine if analytes cross-react with non-target beads. Test 2 is for individual analytes and multiplexed detection antibodies to determine if reporter antibodies cross-react with non-target analytes. Test 3 is for multiplexed analytes and multiplex detection antibodies to determine sensitivity and to confirm there is no cross-reactivity in the fully multiplexed assay. Each test should be run as a standard curve with a blank and 7 concentrations of analyte as shown in the dilution table on the next page.
Three-fold serial dilution of individual and multiplexed cytokines

<table>
<thead>
<tr>
<th>Tube</th>
<th>IL-4 (pg/mL)</th>
<th>IL-6 (pg/mL)</th>
<th>IL-8 (pg/mL)</th>
<th>IL-4, IL-6, IL-8 (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>2</td>
<td>3333.3</td>
<td>3333.3</td>
<td>3333.3</td>
<td>3333.3</td>
</tr>
<tr>
<td>3</td>
<td>1111.1</td>
<td>1111.1</td>
<td>1111.1</td>
<td>1111.1</td>
</tr>
<tr>
<td>4</td>
<td>370.4</td>
<td>370.4</td>
<td>370.4</td>
<td>370.4</td>
</tr>
<tr>
<td>5</td>
<td>123.5</td>
<td>123.5</td>
<td>123.5</td>
<td>123.5</td>
</tr>
<tr>
<td>6</td>
<td>41.2</td>
<td>41.2</td>
<td>41.2</td>
<td>41.2</td>
</tr>
<tr>
<td>7</td>
<td>13.7</td>
<td>13.7</td>
<td>13.7</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Replace any reagents that show interference, cross-reactivity, or poor performance and determine the optimal sample and reaction volumes, microspheres per reaction (within the range of 2000-5000 microspheres per region), incubation times, detection antibody and reporter concentrations, coupling amount for capture reagents, and assay format (washed vs. homogeneous), and evaluate the performance of the optimized assay with test samples.

The assay results below are specific with <1% cross-reactivity among the cytokine targets. Cross-reactivity was calculated using the net median fluorescence intensity (Net MFI) of individual and multiplexed detection antibodies and capture antibody-coupled beads in the presence of single antigen at the third highest concentration in the standard curve.

Cross-Reactivity Results: Percentage of Total Signal (Net MFI)

<table>
<thead>
<tr>
<th>Target</th>
<th>IL-4</th>
<th>IL-6</th>
<th>IL-8</th>
<th>IL-4, IL-6, IL-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4</td>
<td>90</td>
<td>-0.3</td>
<td>-0.2</td>
<td>90</td>
</tr>
<tr>
<td>IL-6</td>
<td>0</td>
<td>93</td>
<td>-0.4</td>
<td>93</td>
</tr>
<tr>
<td>IL-8</td>
<td>0.1</td>
<td>-0.4</td>
<td>98</td>
<td>98</td>
</tr>
</tbody>
</table>

Sensitivity, limit of detection, precision, and linearity

Several resources are available for guidance in determining the analytical performance characteristics for an assay, such as those listed below. The information provided here serves only as an example approach for determining some of those characteristics. Be sure to consult the references appropriate for your laboratory and assay to ensure all required parameters have been incorporated into your study design.

The working assay range will also need to be determined during assay development. Limit of Blank (LoB), Limit of Detection (LoD), and Limit of Quantitation (LoQ) are used to determine the smallest concentration that can be reliably measured by an analytical procedure.

- LoD is the lowest analyte concentration likely to be reliably distinguished from the LoB and at which detection is feasible. LoD is determined by utilizing both the measured LoB and test replicates of a sample known to contain a low concentration of analyte.
- LoB is the highest apparent analyte concentration expected to be found when replicates of a blank sample containing no analyte are tested.
• LoQ is the lowest concentration at which the analyte can not only be reliably detected but at which some predefined goals for bias and imprecision are met. The LoQ may be equivalent to the LoD or it could be at a much higher concentration.
• The lower limit of quantitation (LLoQ) is the lowest analyte concentration that can be quantified with acceptable precision and accuracy.
• The upper limit of quantitation (ULoQ) is the highest analyte concentration that can be quantified with acceptable precision and accuracy.

<table>
<thead>
<tr>
<th>Targets</th>
<th>LLoQ</th>
<th>ULoQ</th>
<th>LOD</th>
<th>Intra-assay</th>
<th>Inter-assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Plex Assay</td>
<td>pg/mL</td>
<td>pg/mL</td>
<td>pg/mL</td>
<td>%CV</td>
<td>%CV</td>
</tr>
<tr>
<td>IL-4</td>
<td>3.1</td>
<td>7,394</td>
<td>0.8</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>IL-6</td>
<td>3.4</td>
<td>1,958</td>
<td>0.8</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>IL-8</td>
<td>24.1</td>
<td>3,066</td>
<td>7</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

The assay results (above) are sensitive, accurate, and precise. The LLoQ and ULoQ values define the working assay range - accuracy (80-120% recovery) and precision (<10% intra-assay CV). The LoD is defined here as the lowest measurable concentration obtained at the MFI of 3 replicate wells for 8 standard points. The inter-assay %CV is measured from the CV of observed concentrations of 8 standard points for 3 independent assays.

Precision
Intra-assay and inter-assay repeatability and run-to-run and site-to-site reproducibility should be determined in the appropriate sample matrix and diluent (i.e., simulated spiked samples). NOTE: Intra/inter-assay CV may vary between site (user) and assay. The following can be used as guidelines:

Within assay working range:

Intra-assay CV <10% is usually acceptable.
A minimum of 3 separate runs should be performed to determine the intra-assay precision. The intra-assay precision should be calculated from a minimum of 2 replicates at each of 2 spiked concentrations.

Inter-assay CV <20% is usually acceptable.
A minimum of 5 separate runs should be performed to determine inter-assay precision.
NOTE: LLoQ may vary between site (user) and target (analyte).

Linearity
A linear relationship should also be evaluated across the range of the assay. The linearity of dilution provides confidence that the analytes present are within the assay range and that assay values are directly proportional to the concentration of the analyte in the expected sample type(s) or matrix.
Linearity of Sample Dilutions (R2)

<table>
<thead>
<tr>
<th>Matrix</th>
<th>IL-4</th>
<th>IL-6</th>
<th>IL-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>0.9999</td>
<td>0.9999</td>
<td>0.9962</td>
</tr>
<tr>
<td>Serum</td>
<td>0.9958</td>
<td>0.9995</td>
<td>0.9986</td>
</tr>
<tr>
<td>Cell Culture</td>
<td>0.9998</td>
<td>0.9996</td>
<td>0.9955</td>
</tr>
</tbody>
</table>

The R2 was determined by linear regression analysis of analytes measured in a 3-fold serial dilution of standard ‘spiked’ samples within assay range in 3 matrices.

Parallelism is related to dilutional linearity. That is, if the sample is diluted and the standards are diluted in the same manner, the results from the standard curves should follow the same pattern as the dilutions, or be ‘parallel’. Note that sample matrices may affect linearity and parallelism and should be considered in the study design.

For additional examples, calculations, and information, refer to the following documents:
- Ligand–Binding Assays (Development, Validation, and Implementation in the Drug Development Arena) Edited by Masood N. Khan and John W. A. Findlay (Wiley)
- Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. Carl Burtis, Edward Ashwood and David Bruns (Elsevier)

Binding kinetics and assay sensitivity

Reducing the volume of the initial incubation with microspheres and sample and/or increasing the initial incubation time may improve the kinetics for analyte binding, thus improving analytical sensitivity. Though seemingly paradoxical, improved sensitivity can be sometimes accomplished by decreasing the amount of capture reagent coupled to the microspheres. While this may result in saturation at lower analyte concentrations and lower the maximum achievable signal, it may improve linearity at low concentrations, thus improving the limit of detection (Fig. 15A).
Antibody affinity and sensitivity

Antibodies with higher affinity can also improve analytical sensitivity, both as capture and detection reagents. Higher signals and extended dynamic range at high analyte concentrations can be achieved by increasing the amount of capture reagent coupled to the microspheres. Both high sensitivity and broad dynamic range can sometimes be achieved through coupling capture antibodies of different affinities to different microsphere color sets and combining them to create a multiplexed standard curve (Fig. 15B). The same effect can be accomplished by coupling different concentrations of the same capture reagent to different microsphere color sets.

Matrix effects

Highly concentrated serum or plasma can lead to ‘matrix effects’ presenting as poor bead recovery, instrumentation clogging, low signals, and variable results. Matrix effects can play a major role in assay performance and the type of sample tested may therefore have effects on assay performance. Labs developing immunoassays should include replicates of samples as well as negative and positive (low, medium, and high) controls with known concentrations of the analytes of interest to aid in interpretation of results. Dilutions of controls should be included that reflect the diluents used to reconstitute the standards and the sample matrix tested, in order to account for possible matrix effects. This will allow the assessment of linearity, precision, and recovery and aid in the choice of best standard curve regression and optimal calibration. An interference study may help in determining the effects of potentially interfering substances.¹ Luminex® recommends that plasma and serum be diluted at least 1:5. If samples cannot be diluted at least 1:5, try using a small initial reaction volume and diluting the final

reaction prior to analysis on the Luminex instrument. In addition, if non-specificity remains after diluting the serum samples, try adding additional blockers to the assay buffers. If BSA is not helping or might interfere with the assay, you may opt for other species albumin (porcine), milk casein, ChemiBLOCKER™, StabilGuard®, Prionex®, etc. or switch to a washed assay format if using a no-wash.

Washed versus unwashed assays

Conversion of a washed assay to an unwashed assay format can reduce hands-on time as well as decrease total assay time. To convert to an unwashed format, sample volume may be decreased and/or detection antibody and SAPE concentrations are increased to compensate for higher concentrations of unbound analyte and detection antibody present in the reaction. Increasing the volume of the detection antibody used as compared to the washed format assay introduces more detection antibody and dilutes the sample prior to analysis, which may overcome matrix effects or issues caused by interfering substances. In some cases, a final post-labeling wash step may be included to reduce background signals and improve overall assay performance and sensitivity.

Instrument settings and reporter fluorescence

Optimization of assay performance and meeting requirements for sensitivity, dynamic range, ease of use, and time to result should be kept in mind when developing the multiplexed assay. To improve sensitivity or increase signal many factors may be considered, including adjustment of the PMT setting on Luminex® 100/200™ and FLEXMAP 3D® instruments; selection of different vendors or types of SAPE reporter; and incorporation of dendrimers, rolling circle amplification, or additional reporter labeling steps.

Other reagent optimization

Finally, the fully multiplexed assay is performed to determine sensitivity and interference when all analytes and reagents are present in the reaction. Multiplexed assay development can be an iterative process, requiring further optimization as complex interactions between assay components are observed. Assay conditions, such as buffer system, blocking agents, sample volume and dilution, total reaction volume, number of microspheres per reaction (2000–5000 per region per well), concentration of capture reagent for coupling, detection antibody and reporter concentration, assay format (washed vs. unwashed), and incubation times are optimized to provide best results according to the specific assay requirements, and the performance is evaluated and validated with known samples. Concentrated biological samples and samples of a highly complex nature, such as serum, plasma, or tissue lysates, should be diluted at least 1:5 to prevent interference or microsphere agglutination from matrix effects. Any reagents that show interference, cross-reactivity, or poor performance should be replaced.
Chapter 4.6

Immunoassay Validation

After confirmation of successful coupling and sufficient signal from a multiplex assay, microspheres should be further tested with standard or control materials. These are often recombinant proteins as known positive and negative samples. Protein samples should be prepared in the appropriate sample matrix to match the composition of the test samples as closely as possible.

Validation of xMAP® immunoassays is described in detail in multiple publications.¹⁻⁷ The parameters selected and optimized will be determined by your particular research needs. The National Institutes of Health Chemical Genomics Center is a good resource for general immunoassay validation (www.ncgc.nih.gov/guidance/section10.html). The Clinical and Laboratory Standards Institute (www.clsi.org) is also a good source for consensus standards and guidelines for laboratories (www.clsi.org/standards/). There are also publications that give “fit-for-purpose” guidelines for validating assays.⁸⁻⁹ Information described here is intended to serve as an example approach to immunoassay validation. Be sure to consult the references appropriate for your laboratory and assay to ensure all required parameters have been considered in your validation protocol.

1. Dernfalk J, Waller KP, Johannisson A. The xMAP technique can be used for detection of the inflammatory cytokines IL-1beta, IL-6 and TNF-α in bovine samples. Vet Immunol Immunopathol 2007;118(1-2):40-49.

Spike and recovery immunoassay sample validation protocol

Preparing sample/control spike serial dilutions (testing sample linearity)
To test samples for linearity, make serial dilutions of the sample spike and control spike (using an appropriate sample matrix). If the neat sample has a value greater than 60% of the high standard, test the sample for natural linearity using the same dilution series described below. Vortex briefly between each dilution.

- **1:2 dilution**
 Add 0.5 mL of sample spike, control spike, or neat sample to 0.5 mL standard curve diluent.

- **1:4 dilution**
 Add 0.5 mL of 1:2 dilution to 0.5 mL standard curve diluent.

- **1:8 dilution**
 Add 0.5 mL of 1:4 dilution to 0.5 mL standard curve diluent.

These dilutions will be read off the standard curve to determine if dilutions of unvalidated samples are parallel to the standard curve and if the values of the sample dilutions are accurate.

Calculations

1. **Spike/Recovery**
 - % Recovery = Observed - Neat x 100
 - Observed = Spiked sample value
 - Neat = Unspiked sample value
 - Expected = Amount spiked into sample
 - Note: The neat sample may read 0 pg/mL.
 - Recovery should be in the range of 80-120%.
 - Control spike should have a recovery value within 80-120%. If not, this indicates there was a problem in preparing the control spike.

2. **Linearity**
 - Use the spiked sample value as the expected value if testing linearity of the spiked sample.
 - Use the neat sample value as the expected value if testing linearity of the unspiked sample.
 - % Recovery (1:2) = Observed value (pg/mL) of 1:2 dilution x 100
 - Expected value (pg/mL) divided by 2
 - % Recovery (1:4) = Observed value (pg/mL) of 1:4 dilution x 100
 - Expected value (pg/mL) divided by 4
 - % Recovery (1:8) = Observed value (pg/mL) of 1:8 dilution x 100
 - Expected value (pg/mL) divided by 8

 - Diluting the control spike is a good control for serial dilutions. Recovery for the control spike should be in the range of 80-120%. If not, this indicates there was a problem in preparing the control spike.

Note: Recovery of spiked/neat samples should be in the range of 80-120%.
Design of assay validation

Typical Performance Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit of Detection</td>
<td>≤1 pg/mL</td>
</tr>
<tr>
<td>Precision</td>
<td></td>
</tr>
<tr>
<td>Intra-assay CV</td>
<td><10%</td>
</tr>
<tr>
<td>Inter-assay CV</td>
<td>≤15%</td>
</tr>
<tr>
<td>Accuracy (% recovery)</td>
<td>80-120%</td>
</tr>
<tr>
<td>Cross-reactivity</td>
<td><1%</td>
</tr>
<tr>
<td>Working Assay Range</td>
<td>Varies from target-to-target</td>
</tr>
<tr>
<td>Matrices</td>
<td>Plasma, serum, culture supernatant, lysates, other biological fluids</td>
</tr>
</tbody>
</table>

Sample Plate Layout

Above is a general plate layout for assay validation. Columns 1-3 and 10-12 are standards, ideally a 7- or 8-point standard curve in standard diluent. The data from these six standard curves will be used to determine standard curve recovery, intra-assay CV, LLOQ, and ULOQ. The wells marked with a B are blank wells, i.e. assays run only with sample diluent. The average of these ten should be used to determine background levels. In columns 4-6, samples 1-6 are standard dilution series run in standard diluent to determine spike control recovery and linearity of dilution. In columns 7-9, samples 1-6 are standard diluted in sample matrix to determine sample spike recovery and inter-assay CV, although a minimum of three plates needs to be run for inter-assay CV. Sample matrix should be depleted of target proteins, e.g. use depleted serum or plasma.

Immunooassay validation references

Chapter 4.7

Proteomics FAQs

For immunoassays, should you couple a polyclonal or monoclonal antibody to the microspheres?

Monoclonal antibodies are recommended because of their specificity. Polyclonal antibodies can be used after an affinity purification step. If options are limited, use what is available and check for possible cross-reactivity with other analytes in the sample. The success of the assay achieving the desired sensitivity and specificity will depend on the quality of the reagents.

Do protein-protein interactions work on Luminex® Microspheres?

Yes. An example of protein-protein interactions is a transcription complex where proteins interact to influence gene expression. Protein-protein interaction applications can be difficult for proteins that have low binding affinity. For a guide to multiplex protein-protein interaction assay applications, visit http://info2.luminexcorp.com/free-guide-to-multiplex-protein. See other references for protein-protein interactions:

Does Luminex recommend sources for antibody pairs?

Luminex has used several sources including R&D Systems®, Pharmingen™, Rockland™, OEM, and Fitzgerald but recommends that customers consult their preferred vendor. Origene® has validated antibody pairs for Luminex assays (see www.origene.com/antibody/Luminex). Quality and purity are of utmost importance. Manufacturers of ELISA kits often sell matched pairs that are easily transferable to microspheres. Examples include but are not limited to, DuoSets® from R&D Systems and eBioscience. Many publications list the source, catalog number and clone number for their antibodies used. Many of the assays built in these publications are common and Luminex suggests you use these as a starting point to save time (see below for antibody pair references).

Websites such as the Antibody Directory (www.antibodydirectory.com), Antibodies Online (www.antibodies-online.com), and Antibody Resource (www.antibodyresource.com) are good resources for searching antibody suppliers. The Antibody Search Engine (www.citeab.com) offers the ability to browse antibodies by Luminex application. When choosing raw materials (antibodies and recombinant proteins), select vendors that have rigorous quality control procedures and provide as much information as possible about the antibodies or
proteins. Request that the vendor provide purity information from SDS- and non-
denaturing-PAGE. Also, request profiles of the antibody from capillary isoelectric
focusing to compare lots from the same vendor. Luminex recommends that you
device your own incoming materials quality control procedure to compare lots
from antibody suppliers. See other references for sources for antibody pairs:

- Bjerre M, Hansen TK, Flyvbjerg A, Tonnesen E. Simultaneous detection of
porcine cytokines by multiplex analysis: Development of magnetic Bioplex
- Carson RT, Vignali DAA. Simultaneous quantitation of 15 cytokines using a
- de Jager W, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT. Simultaneous
detection of 15 human cytokines in a single sample of stimulated peripheral
- de Jager W, Prakken BJ, Blijsma JWJ, Kuis W, Rijkers GT. Improved multiplex
immunoassay performance in human plasma and synovial fluid following
- de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V.
Prerequisites for cytokine measurements in clinical trials with multiplex
- Dernfalk J, Waller KP, Johannisson A. Commercially available antibodies to
human tumour necrosis factor-alpha tested for cross-reactivity with ovine
and bovine tumour necrosis factor-alpha using flow cytometric assays. Acta
- Dernfalk J, Waller KP, Johannisson A. The xMAP® technique can be used for
detection of the inflammatory cytokines IL-1a, IL-6 and TNF-alpha bovine
- Faucher S, Crawley AM, Decker W, Sherring A, Bogdanovic D, Ding T,
Bergeron M, Angel JB, Sandstrom P. Development of a quantitative
microsphere capture assay for soluble IL-7 receptor alpha in human plasma.
Fang Y, Wong S, Kulas K, Christopher-Hennings J. Development of an
8-plex Luminex assay to detect swine cytokines for vaccine development:
Assessment of immunity after porcine reproductive and respiratory
syndrome virus (PRRSV) vaccination. Vaccine 2010;28:5356-64.
- Ray CA, Bowsher RR, Smith WC, Devanarayan V, Willey MB, Brandt JT,
Dean RA. Development, validation, and implementation of a multiplex
immunoassay for the simultaneous determination of five cytokines in human
- Rizzi G, Zhang YJ, Latek R, Weiner R, Rhine PW. Characterization and
development of a Luminex-based assay for the detection of human IL-23.
- Skogstrand K, Thorsen P, Norgaard-Pedersen B, Schendel DE, Sorensen LC,
Hougaard DM. Simultaneous measurement of 25 inflammatory markers and
neurotrophins in neonatal dried blood spots by immunoassay with xMAP
- Wood B, O’Halloran K, VandeWoude S. Development and validation of a
multiplex microsphere-based assay for detection of domestic cat (Felis
Does Luminex recommend specific assay controls?

Many customers have successfully incorporated commercially available assay controls, like the AssayCheX® Process Control Panel from Radix® Biosolutions, in their xMAP assays.

Should peptides be synthesized with a linker?

Putting the linker on the beads makes peptide synthesis easier and cheaper. Adding a linker with a terminal amine on the peptide for coupling to carboxylated microspheres is a suitable alternative.

Does an assay involving peptides require alternate assay buffers?

It depends upon the assay format. If assaying for peptide specific antibodies then a normal immunoassay buffer should suffice (like PBS-BSA). When using peptides to measure enzymatic reactions, a buffer optimal for that assay would be required.

Do you have any recommendations for labeling proteins?

Biotin labeling can be performed using the sNHS-LC-Biotin labeling kit from Pierce® (ThermoFisher®) www.piercenet.com/product/ez-link-sulfo-nhs-lc-biotin-biotinylation-kits. Reagents may be ordered with reporter fluorophores directly labeled. We have had success labeling proteins with phycoerythrin using PhycoLink® kits from Prozyme (www.prozyme.com).

Can polysaccharides be coupled to microspheres?

For information regarding the coupling of polysaccharides to microspheres, please refer to the following publications:

Are there alternatives to BSA for blocking?

Any non-specific protein can be used for blocking including many of the commercially available blocking buffers. Alternative blocking materials include: fish or porcine collagen, casein, StabilGuard® Immunoassay Stabilizer (BSA-Free). Do not use unpurified blockers such as non-fat milk.
Can xMAP be used for enzyme activity assays?

Yes, substrates can be coupled to the beads and labeled. Enzyme activity is then monitored by a decrease in MFI. For an example see:

Can streptavidin-R-phycoerythrin (SAPE) be used in assays when the samples are in tissue culture media?

Tissue culture generally contains a large amount of biotin. The SAPE will bind to the biotin in the media and not onto the detection antibody. Here are some suggestions for a no-wash format with tissue culture samples:

- Use directly coupled detection antibody.
- Pre-combine the detection antibody and the SAPE (30-60 minutes) before addition to the sample. By doing this the detection antibody and SAPE can bind first before the free biotin can interfere.

How many PE molecules per MFI?

Based on experiments using PE standards, the approximate molecules of PE per MFI is:

- For Luminex 200, 23 PE/MFI at standard (low) PMT; 5 PE/MFI at high PMT.
- For FLEXMAP 3D®, 15 PE/MFI at standard (low) PMT; 3 PE/MFI at high PMT.
- For MAGPIX®, 23 PE/MFI.

If you have multiple instruments or collaborator(s) with different instruments, be sure to optimize on all instrument types as the raw MFI results will differ between instruments.

What third-party data processing tools does Luminex recommend?

- Bio-Rad® - BioPlex® Manager
- Microsoft® Excel®
- Millipore® - MILLIPLEX® Analyst
 www.millipore.com/bmia/fix4/multiplex-assay-analysis-software
- MiraiBio® - MasterPlex® QT
- Sigma Plot™
How do samples containing biological fluids perform on the Luminex Instruments?

As long as the reagents function in the biological matrix, the assay should work on the Luminex platform with the proper optimization. A 1:5 dilution is a recommended starting point for samples containing serum or plasma. Urine, CSF and synovial fluid may be run without dilution following centrifugation or filtration. Assays can be performed in undiluted biological fluids and then diluted before running on the Luminex platform. Often, routine assay processing includes a sufficient dilution with the addition of the microspheres, detection antibody and fluorescent reporter. Assays may not be as sensitive in biological fluids as they are in buffer because the fluids are less purified and may contain interferents. When running biological fluids, remember to sanitize with 10-20% bleach and wash and soak with distilled water at the end of the day to prevent clogging. Also use the stringent cleaning routine (with 0.1-0.2N NaOH) daily to weekly as needed to minimize clogs.

What signal is considered a ‘positive’ signal?

A general recommendation is that a positive signal should be at least 2 to 3 standard deviations (SD) above background (or the negative control). Similarly, a signal-to-noise ratio (SNR) of 2 to 3 may be considered a positive result. Appropriate cutoff values for positive MFI should be determined for each assay by running known positive and negative samples. Typically, a Confidence Interval (i.e., 95% confidence interval) is used to determine the reliability of the cutoff value.

Which buffers/solvents are compatible with the Luminex system?

During the coupling procedure, avoid buffers that contain free amines that might interfere with the coupling to the COOH sites on the beads. As the salt concentration of the assay buffer increases, the classification of the beads in the flow analyzers may be effected causing the beads to spread out of the region (i.e., SSC buffer). Also avoid organic solvents as they will cause the internal classification dyes of the beads to leach out causing misclassification. See Appendix A for a list of Incompatible Buffers.

Can formaldehyde be used to stop reactions on the Luminex Microspheres?

Stop solutions are generally not needed, particularly for washed assays. Assays can be held for several hours prior to analysis if a final wash is performed to remove unbound reporter and the reactions (resuspended in assay buffer) are held refrigerated and protected from light. Formaldehyde or Paraformaldehyde can usually be used to stop reactions in microsphere assays. The final concentration should be less than 1%. We recommend testing it with a small sample of beads coupled to reagents before incorporating it fully into the procedure.
How much should you increase the amount of PE when converting from monoplex to multiplex?

Use the cumulative concentration of the monoplex assays, generally 1.5 times the detection antibody concentration. There is no prescribed ratio of biotin to SAPE concentration because the extent of biotinylation of detection antibodies is usually not known. Titration is recommended. More PE must be added for no-wash than for washed assays.

What does it mean when there is a high RP1 peak in the zero bin of the histogram?

This may occur in no-wash assays where the RP1 signal on the bead is less than the background signal. The background subtract algorithm of the software takes a background reading before and after each bead. If the amount of fluorescence present in solution is greater than the fluorescence on the beads themselves, zero values will be reported. This can be corrected by reducing the amount of reporter fluorescence or washing samples before running them.

Can the Luminex platform analyze whole cell assays?

The Luminex platform is not designed to analyze whole cells, especially eukaryotic cells, which are much larger than the xMAP microspheres. However, the platform has been used for capture of bacterial cells. If you do run cell-based assays on the MAGPIX, there is the possibility of a biofilm layer forming in the imaging cell. Routine cleaning with 0.1 N NaOH is a necessity in order to minimize bacterial growth. These papers describe the capture whole bacterial cells:

Cell lysates can be analyzed as long as the viscosity of the sample is sufficiently reduced before aspirating into the analyzer. This must be determined empirically by the user. The user needs to be aware of potential shifting of the beads out of their regions due to composition differences between the sample core and sheath fluid in the flow analyzers.
How many events should be collected per analyte?

50-100 events is sufficient to obtain accurate results. For a detailed study on the effect of counting bead events and assay results see:

Carson and Vignali (1999) concluded, “The data derived from as few as 100 beads per cytokine assay was sufficient to obtain accurate results. While all subsequent data presented here represent the collection of approximately 100 events per cytokine per sample, comparable results from fewer events may be possible.”

Several studies (not published) have concluded that a minimum of 35 events is required to obtain a statistically valid median result. Customers may want to carry out a similar study to determine the optimal number of events to collect. In determining how many microsphere events to collect in your sample, keep in mind that the output of the assay is median fluorescence determined from the sampled microspheres.

Is there an alternative to washing microspheres with dH$_2$O prior to activation?

While Luminex recommends washing microspheres with dH$_2$O prior to activation with sulfo-NHS and EDC, customers can choose to wash microspheres with MES, pH 6.0.

Can I multiplex assays when the analytes are found in widely different biological concentrations (e.g., µg/mL vs. pg/mL)?

Low concentration analytes require the sample to be diluted as little as possible (1:5 or less) in the initial incubation step. This can cause high concentration analytes to be outside of the dynamic range of the system. To multiplex assays for analytes with widely disparate concentration ranges, try increasing the number of beads per set for the high concentration analytes to use the beads to “dilute” the analyte. Alternatively, using a weaker reporter (Alexa Fluor® 532) for the high concentration analytes can bring these assays into the detectable dynamic range. The FLEXMAP 3D analyzer has an extended dynamic range that may make it possible to multiplex assays with different dynamic ranges without any modifications at all.
Chapter 5.1

Development of Nucleic Acid Assays

While there are a large number of scientific publications describing a variety of Luminex® based multiplex genomic assays (www.luminexcorp.com/publications), the protocols outlined in this guide describe a number of chemistries developed and tested at Luminex. While protocols for oligo coupling, different SNP typing chemistries, miRNA assays and hybridization protocols are provided, protocols or kits for multiplex gene expression and other applications can be found in the literature or may be provided by certain Luminex partners.

For users needing to develop their own multiplex assays, the open nature of Luminex’s xMAP® Technology allows it to be used for the development of a number of genomic applications such as gene expression analysis, miRNA analysis, single nucleotide polymorphism (SNP) analysis, specific sequence detection and other applications. Multiplex genomic assays may be developed by coupling user defined sequence-specific capture oligos to MagPlex® beads, or to shorten assay development times the user can purchase MagPlex®-TAG™ beads which are already coupled to unique capture sequences which can be used for most genomic applications. For any Luminex based multiplex genomic assay, analysis is based on the analyte signal intensity detected on the different analyte specific bead regions in a multiplex reaction mix.

Many of the protocols in this cookbook focus on several genomic chemistries where target molecules are captured with MagPlex-TAG Microspheres. However, with certain modifications, some of these applications can be used with beads coupled with capture sequences designed by the user.

Whether using MagPlex-TAG Microspheres or coupling user defined capture sequences, development of an effective xMAP-based nucleic acid assay is dependent on a number of factors. One of the first things to consider is the purpose of the assay. Depending on the application chosen, different types of starting nucleic acid types and specific chemistries may be required to generate labeled target molecules for data collection with a Luminex instrument.

In general, the steps involved with designing a xMAP-based nucleic acid assay are described in the following workflow:
Identify assay application
- Gene expression
- SNP typing
- Sequence detection (CNV, pathogen detection, etc.)
- miRNA analysis

Identify sample type and type of nucleic acid starting material required
- Tissue, cell culture, swabs, etc.
- DNA or RNA input material

Determine best chemistry to generate reporter molecules
- Need to convert RNA to DNA?
- Starting with DNA preparation?
- Is PCR amplification of target needed?
- Type of chemistry, PCR, primer extension or ligation-based application

Bead types needed
- Need to couple capture molecules to beads?
- Can MagPlex-TAG beads be used?
- What bead regions are compatible with your instrument?

Design probes for specific chemistry and optimization
- Use bioinformation tools to design suitable probes for application
- Test low plex mixes to optimize with assay chemistry

Optimize and validate with more probes to generate complete multiplex mix
- Is background low across all probes and samples?
- Is specific signal for each analyte maintained and are expected patterns observed?
- Is signal range acceptable for accurate analysis?
Chapter 5.2

Nucleic Acid Coupling

General guidelines for nucleic acid coupling to xMAP® Microspheres

Coupling oligonucleotides (oligos) to xMAP Microspheres is a straightforward process but does require some optimization steps to ensure the best results with a multiplex assay. While Luminex® supports custom oligo coupling, for some applications, Luminex has developed MagPlex®-TAG™ Microspheres. These are beads that are already coupled with unique 24-base DNA sequences (‘anti-TAGs’) that capture complementary ‘TAG’ sequences generated on target molecules with several different genomic chemistries. These beads circumvent the need for assay developers to go through the process of coupling oligos to beads and validating the in-house coupled beads when developing a multiplex assay.

Figure 17.

For users wishing to couple custom capture oligonucleotide sequences to xMAP beads, below is a standard carbodiimide coupling protocol. Oligo probes must have a primary amine for coupling to bead carboxyl groups. For best performance we recommend that oligonucleotides are synthesized with a 5’ end amine-spacer (e.g., amino-modifier C12). Having this spacer ensures that the coupled oligo is positioned off of the bead surface to facilitate interaction with the target and reporter molecules it needs to capture in an assay. Refer to Chapter 5.4 (Optimization of Nucleic Acid Assays) for additional information and recommendations.
Oligonucleotide coupling is a one-step process where microsphere carboxyl groups are activated by EDC and form covalent bonds with primary amines on amine-modified oligonucleotides. Because of the reactivity with primary amines, modified oligo preparations should not be stored in buffers with amine-containing compounds such as Tris, BSA, azide, glycerol, urea and some detergents. It is best to resuspend oligos in molecular grade H₂O.
Chapter 5.2.1

Standard Nucleic Acid Coupling to xMAP® Microspheres

Below is a standard coupling protocol for 5 million MagPlex® Microspheres per reaction. Coupled microsphere stability depends on the stability of the coupled nucleic acid but when properly stored, coupled microspheres are usually stable for more than 1 year. The protocol for coupling amine-modified oligos to beads only takes a few hours and can be scaled up or down as needed. The optimal ratio of oligo to beads will depend on several factors including length of probe, size of target and secondary structure; however, 0.2 to 0.5 nmol oligo performs best in a 5 million microsphere coupling reaction. Additional recommendations for oligo to bead ratios can be found in Chapter 5.4 - Optimization of Nucleic Acid Assays.

Summary of protocol

Add microspheres to reaction tube
Wash microspheres with MES buffer
Add oligonucleotide
Add EDC solution
Incubate for 30 minutes
Add 2nd EDC solution
Incubate for 30 minutes
Add Tween-20 buffer
Wash microspheres with SDS buffer and resuspend microspheres w/ TE buffer
Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex Microspheres</td>
<td>Luminex</td>
</tr>
<tr>
<td>5' amine C-12 spacer Oligonucleotides (Special order)</td>
<td>IDT® or other vendor</td>
</tr>
<tr>
<td>0.1 M MES Buffer pH 4.5</td>
<td>Sigma M2933</td>
</tr>
<tr>
<td>0.02% Tween-20</td>
<td>Sigma P9416</td>
</tr>
<tr>
<td>1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)</td>
<td>Pierce 77149</td>
</tr>
<tr>
<td>TE Buffer pH 8.0</td>
<td>Sigma T9285</td>
</tr>
<tr>
<td>0.1% SDS</td>
<td>Sigma L4522</td>
</tr>
<tr>
<td>RNase/DNase-Free Microcentrifuge Tubes 1.5 mL</td>
<td>USA Scientific 1415-2500 or Eppendorf Protein LoBind® 022431081</td>
</tr>
<tr>
<td>Disposable pipette tips; multi- and single-channel (2-1000 µL)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Barrier pipette tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized H2O (ddH2O) - molecular grade</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

Protocol 5.2.1: Nucleic acid coupling

1. Bring a fresh aliquot of -20°C, desiccated Pierce EDC powder to room temperature.
2. Resuspend the amine-substituted oligonucleotide (“probe” or “capture” oligo) to 1 mM (1 nanomole/µL) in dH₂O.
3. Resuspend the stock uncoupled microspheres by vortexing and sonication according to the instructions described in the product information sheet provided with your microspheres.
4. Transfer 5.0 x 10⁶ of the stock microspheres to a USA Scientific microcentrifuge tube.
5. Pellet the stock microspheres with a tube magnet or by microcentrifugation at ≧8000 x g for 1-2 minutes.
6. Remove the supernatant and resuspend the pelleted microspheres in 50 µL of 0.1 M MES, pH 4.5 by vortexing and sonication for approximately 20 seconds.
7. Prepare a 1:10 dilution of the 1 mM capture oligo in dH₂O (0.1 nanomole/µL).
8. Add 2 µL (0.2 nanomole) of the 1:10 diluted capture oligo to the resuspended microspheres and mix by vortex.
9. Prepare a fresh solution of 10 mg/mL EDC in dH₂O.
10. One by one for each coupling reaction, add 2.5 µL of fresh 10 mg/mL EDC to the microspheres (25 µg or ≈ 0.5 µg/µL) and mix by vortex.
11. Incubate for 30 minutes at room temperature in the dark.
12. Prepare a second fresh solution of 10 mg/mL EDC in dH₂O.
13. One by one for each coupling reaction, add 2.5 µL of fresh 10 mg/mL EDC to the microspheres and mix by vortex.
14. Incubate for 30 minutes at room temperature in the dark.
15. Add 1.0 mL of 0.02% Tween-20 to the coupled microspheres.
16. Pellet the coupled microspheres with a tube magnet or by microcentrifugation at ≧8000 x g for 1-2 minutes.
17. Remove the supernatant and resuspend the coupled microspheres in 1.0 mL of 0.1% SDS by vortex.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: See Recommendations for Scaling Oligonucleotide-Microsphere Coupling in next section.

Note: We recommend using a fresh aliquot of EDC powder for each EDC addition.
18. Pellet the coupled microspheres with a tube magnet or by microcentrifugation at \(\geq 8000 \times g \) for 1-2 minutes.
19. Remove the supernatant and resuspend the coupled microspheres in 100 µL of TE, pH 8.0 by vortex and sonication for approximately 20 seconds.
20. Enumerate the coupled microspheres by hemacytometer or other particle/cell counter.
21. Store coupled microspheres refrigerated at 2-8°C in the dark.

Note: If using a hemacytometer proceed as follows:

a. Dilute the resuspended, coupled microspheres 1:100 in dH\(_2\)O.
b. Mix thoroughly by vortexing.
c. Transfer 10 µL to the hemacytometer.
d. Count the microspheres within the 4 large corners of the hemacytometer grid.
e. Microspheres/µL = (Sum of microspheres in 4 large corners) x 2.5 x 100 (dilution factor).
f. Note: maximum is 50,000 microspheres/µL.
Once capture oligonucleotides have been coupled to xMAP® Microspheres, it is strongly recommended to assess coupling efficiency before proceeding to assay development. The coupled microspheres can be hybridized to biotinylated target oligonucleotides, labeled with streptavidin-R-phycoerythrin (SAPE) and analyzed on a Luminex® instrument.

Determining the optimum amount of oligo that provides the highest signal may require several coupling reactions at different oligo amounts. Beads from each coupling reaction can then be hybridized with a complementary biotin labeled oligonucleotide (5 to 200 fmols) to analyze coupling efficiency and signal intensity. We recommend purchasing sequence-specific 5’ biotinylated complementary oligos for each capture sequence as the most reliable method, since it allows precise amounts of target with a single biotin group to be used in the hybridization reaction.

The following protocol may be used for confirmation of oligonucleotide coupling reactions.

Summary of protocol

1. **Add microspheres to reaction tube**
2. **Add SAPE**
3. **Add SAPE**
4. **Add biotinylated oligo probe**
5. **Incubate 37-60°C for 5 min**
6. **Move to thermal cycler: 96°C for 90 s, 37-60°C for 15 minutes**
7. **Incubate 37-60°C for 5 min**
8. **Read 50 μL on Luminex analyzer**
Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (oligonucleotide-coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>1.5X TMAC Hybridization Solution</td>
<td>See Appendix A</td>
</tr>
<tr>
<td>1X TMAC Hybridization Solution</td>
<td>See Appendix A</td>
</tr>
<tr>
<td>TE Buffer pH 8.0</td>
<td>Sigma T9285</td>
</tr>
<tr>
<td>96 well bead hybridization plate</td>
<td>Corning® Costar® 6509</td>
</tr>
<tr>
<td>Biotin-labeled complementary oligonucleotide targets</td>
<td>Any suitable source</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® S-866, ProZyme® or equivalent</td>
</tr>
<tr>
<td>RNase/DNase-free microcentrifuge tubes 1.5 mL</td>
<td>USA Scientific 1415-2500 or Eppendorf LoBind® 022431081</td>
</tr>
<tr>
<td>MicroSeal® A film</td>
<td>BioRad MSA5001</td>
</tr>
<tr>
<td>Brayer roller, soft rubber or silicon</td>
<td>USA Scientific 9127-2940</td>
</tr>
<tr>
<td>Disposable pipette tips; multi- and single-channel (2-1000 µL)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Distilled deionized H$_2$O (ddH$_2$O) - molecular grade</td>
<td>Any suitable source</td>
</tr>
</tbody>
</table>

A protocol for verifying oligonucleotide coupling is provided below. A dose response increase in MFI should be observed as concentration of labeled target oligonucleotide increases. In general, an oligonucleotide coupling should yield at least 10,000 MFI (standard PMT or MAGPIX®) at saturation for optimal use in hybridization assays.

Protocol 5.2.2: Oligonucleotide coupling confirmation

1. Select the appropriate individual MagPlex coupled bead sets and resuspend by vortexing and sonication for 20 seconds each.
2. Dilute/concentrate the coupled bead sets to prepare a mixture containing 75 microspheres of each set/µL in 1.5X TMAC hybridization solution. Vortex and sonicate for approximately 20 seconds. (Note: 33 µL are required for each reaction to give 2,500 beads of each set/reaction.)
3. Add 33 µL of the microsphere mixture to each well of a bead hybridization plate as needed for each reaction.
4. Add 17 µL of dH$_2$O to each background well.
5. Add 5 to 20 µL of complementary biotin-oligonucleotide (5 to 200 femtomoles) to appropriate sample wells.
6. Adjust the total volume to 50 µL by adding the appropriate volume of dH$_2$O or TE to each sample well.
7. Cover the plate with MicroSeal A film to prevent evaporation. Process in a thermal cycler with the following program.
 - 96°C for 90 seconds
 - 37-60°C for 15 minutes
8. Dilute SAPE to 10 µg/mL in 1X TMAC Hybridization solution. (Note: 25 µL are required for each reaction.)
9. Add 25 µL of 10 µg/mL SAPE to each well and mix by gently pipetting up and down several times. (Note: Final concentration of SAPE should be 2-4 µg/mL.)
10. Incubate at hybridization temperature for 5 minutes.
11. Analyze 50 µL at hybridization temperature on the Luminex analyzer according to the system manual.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: Coupling confirmation should be performed at the anticipated assay hybridization temperature.
Figure 18 – Plot of experimental results for oligo coupling, as measured by a Luminex analyzer. Results shown are typical for successful coupling reactions. MFI values increase as more complementary oligo is added and the MFI values exceed 10,000 as the hybridization reaction reaches saturation. Optimal amount for typical coupling is usually 0.2 to 1 nanomole per 5 million microspheres.

Figure 18. Typical Results of an Oligonucleotide Coupling Reaction

Oligonucleotide coupling references

Chapter 5.3

Common Nucleic Acid Assay Formats

Luminex® is capable of a number of genomic assay formats such as gene expression analysis, micro RNA analysis, single nucleotide polymorphism (SNP) analysis, specific sequence detection and other applications. Assays may be developed by coupling sequence specific capture oligos to MagPlex® beads, or TAG sequences may be incorporated into assay reactions to capture to MagPlex®-TAG™ beads without the need to couple oligos.

Figure 19. Common nucleic acid assays include A) genotyping (qualitative) and B) gene expression (quantitative).

Common nucleic acid formats include Oligo Ligation Assay (OLA) SNP Typing, Allele-Specific Primer Extension (ASPE) SNP Typing, Target-Specific PCR Sequence Detection, Direct DNA Hybridization Sequence Detection and MicroRNA Analysis. The following sections cover each of these assays in detail, including Assay Overview, Materials Needed, Buffer and Reagent Recipes, Step-by-Step Protocols, Recommendations for Optimization and Troubleshooting and References.
Chapter 5.3.1

Oligo Ligation Assay (OLA) SNP Typing

The oligonucleotide ligation assay (OLA) is a flexible, inexpensive and simple approach for detecting SNPs and other sequence variations. The flexibility of the assay has allowed its use for genotyping a number of different genes and organisms.1-5

In OLA chemistry, one or more forward probes containing TAG sequences bind adjacent to a common biotinylated downstream probe (Figure 20). The close proximity of a bound OLA-TAG probe 3’ end with the OLA reporter probe 5’ end allows enzymatic ligation to join them into a complete biotinylated reporter molecule. If the OLA-TAG probe 3’ base is not complementary to the SNP variant base, ligation does not occur and no significant signal is generated for analysis.

Note that OLA probes do not have primer binding sites for PCR amplification as with other ligation chemistries. With this chemistry, signal amplification is achieved by prior amplification of genomic target regions and multiple cycles of the ligation reaction.

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex®-TAG™ Microspheres</td>
<td>Luminex®</td>
</tr>
<tr>
<td>Primers for PCR amplification of gDNA target regions.</td>
<td>IDT or other vendor</td>
</tr>
<tr>
<td>OLA- TAG primers with 5' TAG sequence and biotinylated OLA reporter primers</td>
<td>IDT or other vendor</td>
</tr>
<tr>
<td>Qiagen® HotStarTaq® 2X Master Mix</td>
<td>Qiagen 203443 or equivalent</td>
</tr>
<tr>
<td>Taq DNA Ligase and 10X Ligase Buffer</td>
<td>New England Biolabs® M0208S or equivalent</td>
</tr>
<tr>
<td>2X Tm Hybridization Buffer</td>
<td>See Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>1X Tm Hybridization Buffer</td>
<td>See Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® S-866, ProZyme® or equivalent</td>
</tr>
<tr>
<td>96-well PCR Plate</td>
<td>BioRad MSP9601</td>
</tr>
<tr>
<td>MicroSeal® A film</td>
<td>BioRad MSA5001</td>
</tr>
<tr>
<td>Magnetic separation plate (special order)</td>
<td>V&P Scientific® VP771LD-4CS or equivalent</td>
</tr>
<tr>
<td>Disposable pipette tips; multi- and single-channel (2-1000 µL)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>RNase/DNase-Free Microcentrifuge Tubes 1.5 mL</td>
<td>USA Scientific or Equivalent</td>
</tr>
<tr>
<td>Barrier Pipette Tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Vortex Mixer</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Bath Sonicator (40 - 55 kHz)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Centrifuge with Microplate Swinging Bucket Rotor</td>
<td>Eppendorf 5704 or equivalent</td>
</tr>
<tr>
<td>Brayer roller, soft rubber or silicon</td>
<td>USA Scientific 9127-2940</td>
</tr>
<tr>
<td>Thermocycler with 96-well Head and Heated Lid</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Luminex Instrument with xPONENT® 3.1 or higher software</td>
<td>Luminex</td>
</tr>
</tbody>
</table>

For complete equipment and materials list see Appendix B

Note: Molecular grade ddH$_2$O should be used for all nucleic acid protocols.

OLA buffer and reagent recipes

<table>
<thead>
<tr>
<th>Step</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex®-TAG™ Microspheres from Luminex</td>
<td>Required microspheres regions should be purchased from Luminex. They should be stored at 4°C in the dark. For multiplex assays, combine different bead regions as directed in the protocol. To assist with making multiplex a microsphere stock mix from individual bead stocks, an Excel based bead calculator is available for determining the method and volumes needed for making the bead mix. Contact Luminex Technical Support for a copy of the bead calculator.</td>
</tr>
<tr>
<td>Enzymes and enzyme reaction buffers</td>
<td>All enzymes and their reaction buffers can be used as directed in the protocol.</td>
</tr>
</tbody>
</table>
PCR amplification primers for gDNA targets

Proper design of these primers for amplification of target regions is required for optimum assay performance. Recommendations for primer designs include:

1. PCR primers should be designed to amplify gDNA target regions containing the SNP(s) of interest.
2. PCR primers should not be labeled.
3. A small amplicon size is not required, as the amplicon is not directly hybridized to the bead surface. However, amplicon size may be restricted by the efficiency of the polymerase used and proximity of the SNPs being studied. If amplifying multiple genomic regions, consider designing amplicons to be similar in size.

These primers can be purchased from multiple vendors. Upon receipt, the primers should be dissolved or diluted with molecular grade distilled-deionized H₂O (ddH₂O) to a concentration of 1 mM (1 nanomole/µL). They can be stored as individual stocks at -20°C. Pooled mixes can be made to deliver 0.2 µM of each primer/PCR reaction or as your gDNA protocol requires.

OLA-TAG and biotinylated OLA reporter primers

OLA primers can be ordered from several oligo manufacturers, such as IDT. Upon receipt, they should be resuspended in molecular grade ddH₂O to 1 mM (1 nanomole/µL). Make a 100 nM OLA-TAG probe mix by combining and diluting each 1 mM stock 1:10,000 into one tube with molecular grade ddH₂O. Make a 5 µM OLA reporter probe mix by combining and diluting each 1 mM stock 1:200 into one tube with molecular grade ddH₂O. Individual stocks and probe mixes should be stored at -20°C.

OLA primer design factors

1. OLA probes should be synthesized for all sequence variants and all OLA-TAG and OLA reporter pairs for each target should be from the same DNA strand.
2. OLA probes should be matched for melting temperature at 51-56°C.
3. OLA-TAG probes should extend out to and include the SNP as the 3' nucleotide.
4. Use oligo design software to select an appropriate TAG sequence or contact Luminex Technical Support for assistance in selecting TAG sequences.
5. The OLA-TAG probe is synthesized with the TAG sequence incorporated at the 5' end.
6. The OLA reporter probe should have a melting temperature of 51-56°C.
7. The OLA reporter probe’s 5’ base should be the nucleotide immediately downstream from the SNP variant nucleotide.
8. The OLA reporter probe must be modified with phosphate at the 5’ end and with biotin at the 3’ end.
9. If two SNPs are close enough so that OLA-TAG and reporter probes overlap, target the second SNP on the opposite strand.

2X Tm Hybridization buffer

The buffer’s composition is 0.4 M NaCl, 0.2 M Tris, 0.16% Triton X-100, pH 8.0. It should be filter sterilized and stored at 4°C.

1X Tm Hybridization buffer

The buffer’s composition is 0.2 M NaCl, 0.1 M Tris, 0.08% Triton X-100, pH 8.0. It should be filter sterilized and stored at 4°C.

streptavidin-R-phycoerythrin (SAPE)

SAPE at can be purchased from a number of suppliers such as Moss Incorporated (SAPE-001G75), Life Technologies™ (S866), ProZyme (various) or equivalent. A working aliquot should be made fresh by diluting with 1X Tm Hybridization buffer to the required volume and concentrations needed as indicated in the washed or no wash protocols.
Protocol 5.3.1: OLA SNP typing

Genomic Target Sequence Amplification

Multiplexed PCR amplification of genomic target regions containing SNPs of interest should be performed under optimized conditions. The parameters listed below are for example purposes only and may not be optimum for your samples or any specific genomic amplification kit you may be using.

Each final reaction contains:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>gDNA template</td>
<td>50 ng</td>
</tr>
<tr>
<td>Qiagen PCR reaction buffer</td>
<td>1X</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1.5 mM</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM each</td>
</tr>
<tr>
<td>primer</td>
<td>0.2 µM each</td>
</tr>
<tr>
<td>Qiagen HotStar or other Taq polymerase</td>
<td>2.5 Units</td>
</tr>
</tbody>
</table>

Amplification of target regions can be done with the following PCR Cycling Parameters:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>15 minutes (for enzyme activation)</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>30 seconds</td>
<td>35 cycles</td>
</tr>
<tr>
<td>55°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>7 minutes</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
<td></td>
</tr>
</tbody>
</table>

Multiplex OLA reaction

Prior to making the 2X OLA master mix, make stocks of 100 nM OLA-TAG primer mix and 5 µM OLA reporter mix as directed in the OLA Buffer and Reagent Recipes section.

1. Make a 2X OLA master mix as follows:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Taq Ligase buffer</td>
<td>2.0 µL</td>
</tr>
<tr>
<td>Taq DNA Ligase (40,000 U/mL)</td>
<td>0.25 µL</td>
</tr>
<tr>
<td>OLA-TAG primer mix (100 nM each)</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>OLA reporter mix (5 µM each)</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>ddH₂O (Molecular Grade)</td>
<td>5.75 µL</td>
</tr>
<tr>
<td>Total volume</td>
<td>10 µL</td>
</tr>
</tbody>
</table>
2. Assemble OLA reactions in 20 µL total volume for each sample as follows:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X OLA master mix</td>
<td>10 µL</td>
</tr>
<tr>
<td>Amplified genomic targets (0.5 to 5 µL)</td>
<td>Y µL</td>
</tr>
<tr>
<td>ddH2O (Molecular Grade) as needed (to 20 µL)</td>
<td>X µL</td>
</tr>
</tbody>
</table>

Total volume= 20 µL

3. Mix OLA reactions by pipetting up and down several times.

4. Cover plate with a plate sealer and perform multiple rounds of ligation in a thermal cycler with the following parameters:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>96°C</td>
<td>2 minutes</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>15 seconds</td>
<td></td>
</tr>
<tr>
<td>37°C</td>
<td>1 minute</td>
<td>30 cycles</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
<td></td>
</tr>
</tbody>
</table>

5. Proceed to hybridization with MagPlex-TAG Microspheres using a washed or no wash protocol.

Hybridization to MagPlex-TAG Microspheres: Washed protocol

1. Select the appropriate MagPlex-TAG microsphere sets and resuspend according to the instructions described in the product information sheet provided with your microspheres.
2. Combine 2500 microspheres of each set per reaction. (Note: If needed, an Excel based bead calculator is available for determining the method and volumes needed for making the bead mix. Contact Luminex Technical Support for a copy of the bead calculator.)
3. Dilute/concentrate the MagPlex-TAG microsphere mixture to 100 microspheres of each set per µL in 2X Tm hybridization buffer and mix by vortex and sonication for approximately 20 seconds.
4. Aliquot 25 µL of the MagPlex-TAG microsphere mixture to each well. (Note: This will provide 2500 beads of each set/reaction.)
5. Add 5 to 25 µL of each OLA reaction to appropriate wells (Note: 1-5 µL is usually sufficient) and add 25 µL of dH2O to each background well.
6. Adjust the total volume to 50 µL by adding the appropriate volume of dH2O to each sample well that received less than 25 µL of OLA reaction.
7. Cover the plate with MicroSeal A film to prevent evaporation and hybridize in a thermal cycler with the following parameters;
 - 96°C for 90 seconds
 - 37°C for 30 minutes
8. Pellet the MagPlex-TAG Microspheres by placing the plate on a magnetic separator for 30 to 60 seconds.
9. After the beads have pelleted, remove the supernatant being careful not to disturb the bead pellets.
10. Resuspend the pelleted MagPlex-TAG Microspheres in 75 µL of 1X Tm hybridization buffer on a magnetic separator for 30 to 60 seconds.
11. After the beads have pelleted, remove the supernatant being careful not to disturb the bead pellets.
12. Repeat steps 8 to 11 for a total of two washes.
13. Resuspend microspheres in 75 µL of 1X Tm hybridization buffer containing 2-8 µg/mL SAPE.
14. Incubate at 37°C for 15 minutes.
15. Analyze 50 µL at 37°C on the Luminex analyzer according to the system manual.

Hybridization to MagPlex-TAG Microspheres: No wash protocol

1. Select the appropriate MagPlex-TAG microsphere sets and resuspend according to the instructions described in the product information sheet provided with your microspheres.
2. Combine 2500 microspheres of each set per reaction.
3. Dilute/concentrate the MagPlex-TAG microsphere mixture to 111 microspheres of each set per µL in 1X Tm hybridization buffer and mix by vortex and sonication for approximately 20 seconds.
4. Aliquot 22.5 µL of the MagPlex-TAG microsphere mixture to each well. (Note: This will provide 2500 beads of each set/reaction.)
5. Add 2.5 µL of dH₂O to each background well.
6. Add 2.5 µL of each sample to the appropriate wells.
7. Cover the plate with MicroSeal A film to prevent evaporation and hybridize in a thermal cycler with the following parameters:
 - 96°C for 90 seconds
 - 37°C for 30 minutes
8. Prepare SAPE Mix by diluting SAPE to 10 µg/mL in 1X Tm hybridization buffer.
9. Add 100 µL SAPE Mix to each well. Mix gently.
10. Incubate at 37°C for 15 minutes.
11. Analyze 100 µL at 37°C on a Luminex analyzer according to the system manual.

Recommendations for optimization and troubleshooting

Low Reporter Intensity

1. Verify the production of the genomic target PCR products (OLA templates) on agarose gels.
2. Verify the hybridization assay by direct hybridization to 5 and 50 femtomoles of labeled oligonucleotide targets (i.e., biotinylated TAGs).
3. Titrate the gDNA input for target region generation to determine the optimal amount for OLA reaction.
4. Titrate the gDNA amplified template input into OLA reaction to determine the optimal amount of template.
5. Titrate the allele-specific and reporter probe inputs to determine optimal concentrations for OLA.
6. Increase the number of cycles in the OLA reaction.
7. Decrease and/or increase the OLA annealing temperature.
8. Check the primer and template sequences for potential secondary structure.
9. Redesign the PCR primers.
10. Redesign the OLA probes for the opposite DNA strand.
11. Lengthen the OLA probes.

Note: An Excel-based bead calculator to facilitate determining the method and volumes needed in making the working microsphere mixture can be obtained by contacting Luminex Technical Support.

Note: An allele-specific to reporter probe ratio of 1:50 improves the probability that an allele-specific probe will anneal adjacent to a reporter probe.
Poor Discrimination
1. Increase the OLA annealing temperature.
2. Redesign the OLA probes for the opposite DNA strand.
3. Shorten the “leaky” OLA probe.

Poor Reporter Distribution Between Alleles
1. Redesign the OLA probes for the opposite DNA strand.
2. Lengthen the OLA probes to increase signal on the “low” allele.
3. Shorten the OLA probes to decrease signal on the “high” allele.

High Background
1. If not using SAPE already containing BSA (i.e., Moss SAPE-001G75), dilute SAPE in 1X Tm buffer containing BSA. Final BSA concentration in the hybridization reaction should be 0.1% BSA.
2. If the high background is due to contamination of the PCR reaction, replace the PCR reagents.
3. If high background is observed for the hybridization negative control, replace the hybridization reagents.
4. If high background is observed for the OLA negative control, replace the OLA reagents.

OLA references

Chapter 5.3.2

Allele-Specific Primer Extension (ASPE) SNP Typing

Allele Specific Primer Extension (ASPE) is a flexible, inexpensive and simple chemistry for detecting SNPs and other sequence variations. The flexibility of the assay has allowed its use for genotyping typing a number of different genes and organisms.1-5

The chemistry takes advantage of a primer’s ability to act as a primer for DNA polymerase when the 3’ base is complementary to the target SNP’s base (Figure 21A). When the 3’ base is complementary, the polymerase can use it as a start site to synthesize new DNA containing biotin-labeled nucleotides, but a primer cannot promote this extension if its 3’ base is mismatched (Figure 21B). With several rounds of primer extension, significant quantities of labeled targets are produced to generate the signals required for analysis of multiple genotypes in one reaction.

To take advantage of this chemistry with the xTAG® Technology, each ASPE primer that identifies a SNP variation needs a unique TAG sequence on its 5’ end (Figure 21). In addition, for each SNP, gDNA targets containing SNPs of interest must be amplified before testing with ASPE probe mixes. This is achieved using standard multiplex PCR amplification methods (Figure 22). Target genomic amplicons can be of various sizes containing multiple SNP targets.

This combination of gDNA target amplification, primer extension for variant detection, and multiplexing with MagPlex®-TAG™ beads, often allows this chemistry to be more reliable than other applications for typing SNP variations in the same reaction.

Figure 22. Amplifications of gDNA target regions of interest

![Diagram showing genomic DNA amplification regions of interest](image)

Materials needed

Reagents and Consumables

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex-TAG Microspheres</td>
<td>Luminex®</td>
</tr>
<tr>
<td>Primers for PCR amplification of gDNA target regions.</td>
<td>IDT or other vendor</td>
</tr>
<tr>
<td>ASPE primers with 5’ TAG sequences</td>
<td>IDT or other vendor</td>
</tr>
<tr>
<td>Qiagen® HotStarTaq® 2X Master Mix</td>
<td>Qiagen, 203443 or equivalent</td>
</tr>
<tr>
<td>ExoSAP-IT® or separate Exo I and SAP</td>
<td>GE Healthcare® US78200, or equivalent</td>
</tr>
<tr>
<td>Platinum® Tsp DNA polymerase, 10X PCR Buffer, 50 mM MgCl₂</td>
<td>Invitrogen®, 11448-024 or equivalent</td>
</tr>
<tr>
<td>Biotin-14-dCTP</td>
<td>Invitrogen, 19518-018 or equivalent</td>
</tr>
<tr>
<td>dNTPs stocks</td>
<td>Life Technologies® 10297-018 or equivalent</td>
</tr>
<tr>
<td>2X Tm Hybridization Buffer</td>
<td>See Buffer and Reagent Recipes section</td>
</tr>
</tbody>
</table>

Vendor

- Luminex®
- IDT or other vendor
- Qiagen, 203443 or equivalent
- GE Healthcare® US78200, or equivalent
- Invitrogen®, 11448-024 or equivalent
- Invitrogen, 19518-018 or equivalent
- Life Technologies® 10297-018 or equivalent

For complete equipment and materials list see Appendix B

Technical Note

Platinum Tfi Exo(-) DNA Polymerase (Life Technologies, 60684-050) and TaKaRa Taq Hot Start DNA Polymerase (Takara Bio®, R007A) also perform well in xTAG ASPE applications.
1X Tm Hybridization Buffer	See Buffer and Reagent Recipes section
streptavidin-R-phycoerythin (SAPE) | Moss SAPE-001G75, Life Technologies S-866, ProZyme or equivalent
96-well PCR Plate | BioRad MSP9601
96-well Bead Hybridization Plate (optional) | Corning® Costar® 6509
MicroSeal® A film | BioRad MSA5001
Magnetic separation plate (special order) | V&P Scientific VP771LD-4CS or equivalent
Disposable pipette tips; multi- and single-channel (2-1000 µL) | Any suitable brand
25 mL reservoirs (divided well) | Any suitable brand
RNase/DNase-Free Microcentrifuge Tubes 1.5 mL | USA Scientific or Equivalent
Barrier pipette Tips | Any suitable brand
Vortex Mixer | Any suitable brand
Microcentrifuge | Any suitable brand
Bath Sonicator (40 - 55 kHz) | Any suitable brand
Centrifuge with Microplate Swinging Bucket Rotor | Eppendorf 5704 or equivalent
Brayer roller, soft rubber or silicon | USA Scientific 9127-2940
Thermocycler with 96-well Head and Heated Lid | Any suitable brand
Luminex Instrument with xPONENT® 3.1 or higher software | Luminex

ASPE buffer and reagent recipes

<table>
<thead>
<tr>
<th>Step</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex-TAG Microspheres from Luminex</td>
<td>Required microsphere regions should be purchased from Luminex. They should be stored at 4°C in the dark. For multiplex assays, combine different bead regions as directed in the protocol.</td>
</tr>
<tr>
<td>Enzymes and enzyme reaction buffers</td>
<td>All enzymes and their reaction buffers can be used as directed in the protocol. Proper design of these primers for amplification of target regions is required for optimum assay performance. Recommendations for primer designs include: 1. PCR primers should be designed to amplify gDNA target regions containing the SNP(s) of interest. 2. PCR primers should not be labeled. 3. A small amplicon size is not required, as the amplicon is not directly hybridized to the bead surface. However, amplicon size may be restricted by the efficiency of the polymerase used and proximity of the SNPs being studied. If amplifying multiple genomic regions, consider designing amplicons to be similar in size. These primers can be purchased from multiple vendors. Upon receipt, the primers should be dissolved or diluted with molecular grade ddH₂O to a concentration of 1 mM (1 nanomole/µL). They can be stored as individual stocks at -20°C. Pooled mixes can be made to deliver 0.2 µM of each primer/PCR reaction or as your gDNA protocol requires.</td>
</tr>
</tbody>
</table>
ASPE primers with 5’ TAG sequence

ASPE primers can be ordered from several oligo manufacturers, such as IDT. Upon receipt, they should be resuspended in molecular grade ddH2O to 1 mM (1 nanomole/µL). Individual stocks and concentrated mixes should be stored at -20°C.

When designing the ASPE primers the following factors should be considered.

1. ASPE primers should be synthesized for all sequence variants and should be from the same DNA strand for each target sequence.
2. ASPE primers should be matched for melting temperature at 51-56°C.
3. ASPE primers should extend out to and include the SNP variant base as the 3’ nucleotide.
4. Use oligo design software to select an appropriate TAG sequence or contact Luminex Technical Support for assistance in selecting TAG sequences.
5. The ASPE primer is designed to include the TAG sequence at its 5’ end.
6. If two SNPs are close enough such that the TAG-ASPE primers will overlap, target the second SNP on the opposite strand.

dNTPs

These can be purchased from several vendors such as Life Technologies™ (10297-018). A 33 mM stock mix can be made by mixing equal amounts of 100 mM dATP, dTTP, and dGTP for the 3 dNTP stock mix for ASPE. Individual stocks and concentrated mixes should be stored at -20°C.

Biotin-14-dCTP

Biotin-labeled dCTP can be purchased from several sources including Life Technologies™ (Invitrogen, 19518-018). It is supplied at 0.4 mM in 100 mM Tris-HCl (pH 7.5), 0.1 mM EDTA. Store at -20°C and use as indicated in the protocol.

2X Tm Hybridization Buffer

The buffer’s composition is 0.4 M NaCl, 0.2 M Tris, 0.16% Triton X-100, pH 8.0. It should be filter sterilized and stored at 4°C.

1X Tm Hybridization Buffer

The buffer’s composition is 0.2 M NaCl, 0.1 M Tris, 0.08% Triton X-100, pH 8.0. It should be filter sterilized and stored at 4°C.

streptavidin-R-phycoerythrin (SAPE)

SAPE can be purchased from a number of suppliers such as Moss Incorporated (SAPE-001G75), Life Technologies™ (S866), ProZyme (various) or equivalent. A working aliquot should be made fresh by diluting with 1X Tm Hybridization buffer to the required volume and concentrations needed as indicated in the wash or no wash protocols.

Protocol 5.3.2: ASPE SNP typing

Genomic Target Sequence Amplification

Multiplexed PCR amplification of genomic target regions containing SNPs of interest should be performed under optimized conditions. The parameters listed below are for example purposes only and may not be optimum for your samples or any specific genomic amplification kit you may be using.

Each final reaction contains:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>gDNA template</td>
<td>50 ng</td>
</tr>
<tr>
<td>Qiagen PCR reaction buffer</td>
<td>1X</td>
</tr>
<tr>
<td>MgCl2</td>
<td>1.5 mM</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM each</td>
</tr>
<tr>
<td>primer</td>
<td>0.2 µM each</td>
</tr>
<tr>
<td>Qiagen HotStar or other Taq polymerase</td>
<td>2.5 Units</td>
</tr>
</tbody>
</table>

Amplification of target regions can be done with the following PCR Cycling
Parameters:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>15 minutes (for enzyme activation)</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>55°C</td>
<td>30 seconds</td>
<td>35 cycles</td>
</tr>
<tr>
<td>72°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>7 minutes</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
<td></td>
</tr>
</tbody>
</table>

EXO/SAP Treatment for the Removal of Unused Primers

Treat 7.5 µL of each PCR reaction with ExoSAP-IT according to the following procedure:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR Reaction</td>
<td>7.5 µL</td>
</tr>
<tr>
<td>ExoSAP-IT</td>
<td>3.0 µL</td>
</tr>
</tbody>
</table>

Total volume = 10.5 µL

Mix and incubate in a thermal cycler with the following protocol:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>30 minutes</td>
</tr>
<tr>
<td>80°C</td>
<td>15 minutes</td>
</tr>
<tr>
<td>4°C</td>
<td>Hold (or store at -20°C)</td>
</tr>
</tbody>
</table>

Detailed Multiplex ASPE Reaction Protocol

Prior to making the 2X ASPE Master Mix dilute the 1 mM ASPE-TAG primer mix 1:2000 (500 nM each) and the 33 mM 3 dNTP stock 1:330 (100 µM each).

1. Make a 2X ASPE Master Mix as follows:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X PCR reaction buffer</td>
<td>2.0 µL</td>
</tr>
<tr>
<td>50 mM MgCl₂</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>TAG-ASPE primer mix (500 nM each)</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>Tsp DNA polymerase (5 U/µL)</td>
<td>0.15 µL</td>
</tr>
<tr>
<td>3 dNTP mix (-dCTP) (100 µM each)</td>
<td>1.0 µL</td>
</tr>
<tr>
<td>400 µM biotin-dCTP</td>
<td>0.25 µL</td>
</tr>
<tr>
<td>ddH₂O (Molecular Grade)</td>
<td>5.1 µL</td>
</tr>
</tbody>
</table>

Total volume = 10 µL
2. Assemble the ASPE reactions in 20 µL total volume for each sample as follows:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X ASPE Master Mix</td>
<td>10 µL</td>
</tr>
<tr>
<td>Target EXO treated PCR Use up to</td>
<td>Y µL</td>
</tr>
<tr>
<td>ddH<sub>2</sub>O as needed (to 20 µL)</td>
<td>X µL</td>
</tr>
<tr>
<td>Total volume</td>
<td>20 µL</td>
</tr>
</tbody>
</table>

3. Mix each ASPE reaction by pipetting up and down several times.

4. Cover plate with a plate sealer and perform multiple rounds of primer extension in a thermal cycler with the following parameters: (Note: The temperature of the 1 minute hybridization step can be adjusted to what is needed for different probe mixes.)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>96°C</td>
<td>2 minutes</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>55°C</td>
<td>1 minute</td>
<td>30 cycles</td>
</tr>
<tr>
<td>72°C - 74°C</td>
<td>2 minutes</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
<td></td>
</tr>
</tbody>
</table>

5. Proceed to hybridization with MagPlex-TAG Microspheres using a washed or no wash protocol.

Hybridization to MagPlex-TAG Microspheres: Washed protocol

1. Select the appropriate MagPlex-TAG microsphere sets and resuspend according to the instructions described in the product information sheet provided with your microspheres (beads).
2. Combine 2500 microspheres of each set per reaction. (Note: If needed, an Excel based bead calculator is available for determining the method and volumes needed for making the bead mix. Contact Luminex Technical Support for a copy of the bead calculator.)
3. Dilute/concentrate the MagPlex-TAG microsphere mixture to 100 microspheres of each set per µL in 2X Tm hybridization buffer and mix by vortex and sonication for approximately 20 seconds.
4. Aliquot 25 µL of the MagPlex-TAG microsphere mixture to each well.
5. Add 5 to 25 µL of each ASPE reaction to appropriate wells (Note: 1-5 µL is usually sufficient) and add 25 µL of dH₂O to each background well.
6. Adjust the total volume to 50 µL by adding the appropriate volume of dH₂O to each sample well that received less than 20 µL of extension reaction.
7. Cover the plate with MicroSeal A film to prevent evaporation and hybridize in a thermal cycler with the following parameters; 96°C for 90 seconds 37°C for 30 minutes
8. Pellet the MagPlex-TAG Microspheres by placing the plate on a magnetic separator for 30 to 60 seconds.
9. After the beads have pelleted, remove the supernatant being careful not to disturb the bead pellets.
10. Resuspend the pelleted MagPlex-TAG Microspheres in 75 µL of 1X Tm hybridization buffer on a magnetic separator for 30 to 60 seconds.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.
11. After the beads have pelleted, remove the supernatant being careful not to disturb the bead pellets.
12. Repeat steps 8 to 11. This is a total of two washes.
13. Resuspend microspheres in 75 µL of 1X Tm hybridization buffer containing 2-8 µg/mL SAPE.
14. Incubate at 37°C for 15 minutes.
15. Analyze 50 µL at 37°C on the Luminex analyzer according to the system manual.

Hybridization to MagPlex-TAG Microspheres: No wash protocol

1. Select the appropriate MagPlex-TAG microsphere sets and resuspend according to the instructions described in the product information sheet provided with your microspheres (beads).
2. Combine 2500 microspheres of each set per reaction.
3. Dilute/concentrate the MagPlex-TAG microsphere mixture to 111 microspheres of each set per µL in 1X Tm hybridization buffer and mix by vortex and sonication for approximately 20 seconds.
4. Aliquot 22.5 µL of the MagPlex-TAG microsphere mixture to each well.
5. Add 2.5 µL of dH₂O to each background well.
6. Add 2.5 µL of each sample to the appropriate wells.
7. Cover the plate with MicroSeal A film to prevent evaporation and hybridize in a thermal cycler with the following parameters;
 - 96°C for 90 seconds
 - 37°C for 30 minutes
8. Prepare reporter mix by diluting SAPE to 10 µg/mL in 1X Tm hybridization buffer.
9. Add 100 µL reporter mix to each well. Mix gently.
10. Incubate at 37°C for 15 minutes.
11. Analyze 100 µL at 37°C on the Luminex analyzer according to the system manual.

Recommendations for optimization and troubleshooting xTAG with ASPE assays

Low Reporter Intensity

1. Verify the production of the PCR products (ASPE templates) on agarose gels.
2. Verify the hybridization assay by direct hybridization to 5 and 50 femtmoles of labeled oligonucleotide targets (i.e., biotinylated TAGs).
3. Titrate the target input to determine the optimal amount for hybridization.
4. Titrate the template input to determine the optimal amount for ASPE.
5. Titrate the biotinylated dCTP input to determine the optimal concentration for ASPE.
6. Increase the number of cycles in the ASPE reaction.
7. Decrease and/or increase the ASPE annealing temperature.
8. Check the primer and template sequences for potential secondary structure.
9. Redesign the PCR primers.
10. Redesign the ASPE primers for the opposite DNA strand.
11. Lengthen the ASPE primers.
Poor Discrimination
1. Increase the ASPE annealing temperature.
2. Redesign the ASPE primers for the opposite DNA strand.
3. Shorten the “leaky” ASPE primer.

Poor Reporter Distribution between Alleles
1. Redesign the ASPE primers for the opposite DNA strand.
2. Lengthen the ASPE primer to increase signal on the “low” allele.
3. Shorten the ASPE primer to decrease signal on the “high” allele.

High Background
1. If not using SAPE already containing BSA (i.e., Moss SAPE-001G75),
 dilute SAPE in 1X Tm buffer containing BSA. Final BSA concentration in the
 hybridization reaction should be 0.1%.
2. If high background is observed for the PCR negative control, verify
 performance of the Exo/SAP step.
3. If the high background is due to contamination of the PCR reaction, replace the
 PCR reagents.
4. If high background is observed for the hybridization negative control, replace
 the hybridization reagents.
5. If high background is observed for the ASPE negative control, replace the ASPE
 reagents.

ASPE references

- Bandier J, Ross-Hansen K, Carlsen BC, Menne T, Linneberg A, Stender S,
 Szecsi PB, Meldgaard M, Thyssen JP, Johansen JD. Carriers of filaggrin gene
 (FLG) mutations avoid professional exposure to irritants in adulthood. Contact
- Bletz S, Bielaszewska M, Leopold SR, Koeck R, Witten A, Schuldes J, Zhang W,
 Karch H, Mellmann A. Evolution of enterohemorrhagic *Escherichia coli* O26 based
- Campbell CT, Llewellyn SR, Damberg T, Morgan IL, Robert-Guroff M,
 Gildersleeve JC. High-throughput profiling of anti-glycan humoral responses to
- Cardoso SP, Chong W, Lucas G, Green A, Navarrete C. Determination of human
 neutrophil antigen-1, -3, -4 and -5 allele frequencies in English Caucasian
 blood donors using a multiplex fluorescent DNA-based assay. Vox Sang
- Francis DM, 2012. DNA sequence variation (SNP) genotyping using Allele
 Specific Primer Extension (ASPE) with the Luminex platform. The Ohio
 State University web site at http://www.extension.org/pages/32476/dna-
 sequencevariation-snp-genotyping-using-allele-specific-primer-extension-aspe-
 with-theluminex-pl.
 E, Sola C. “Spoligotyping,” a dual-priming-oligonucleotide-based direct-
 hybridization assay for tuberculosis control with a multianalyte microbead-
Target-Specific PCR Sequence Detection with MagPlex®-TAG™ Microspheres

There are a number of different PCR approaches to generate reporter molecules for detecting sequences in different types of samples. These approaches have been used for a number of applications including the detection of various pathogens. With standard PCR reaction chemistries, double-stranded PCR amplicons are generated along the whole length of the target sequence and primers. These double stranded amplicons can generate low signals in xTAG applications since the biotin-labeled TAG strand will preferentially bind its complementary anti-TAG strand rather than the complementary anti-TAG sequence on the beads. Elimination or reduction of the amount of unlabeled complementary strand can be achieved with more complex protocols involving enzyme treatments or asymmetric PCR chemistries.

A simpler and more straightforward approach is to prevent synthesis of the anti-TAG complementary portion of the amplicon during the PCR reaction. This can be achieved with the use of a TAG-containing primer where the TAG sequence is separated from the sequence-specific portion of the primer with an internal spacer (Figure 23A). When this TAG primer is combined with a sequence-specific 5’ biotinylated reverse primer, an amplicon containing a single-stranded TAG overhang and a sequence specific double-stranded biotinylated region is generated (Figure 23B). The TAG portions of these amplicons do not have a competing anti-TAG complementary strand to inhibit binding to the anti-TAG sequences on the MagPlex-TAG beads (Figure 23C).

Figure 23 - Target-Specific PCR sequence detection involves (A) a TAG-containing primer separated from the sequence-specific portion by an internal spacer. When combined with a biotinylated sequence-specific reverse primer, (B) a double-stranded amplicon is created with a single-stranded TAG overhang. (C) The TAG overhang allows hybridization to MagPlex-TAG microspheres without a competing anti-TAG complementary strand generated in the PCR reaction.

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex-TAG Microspheres</td>
<td>Luminex</td>
</tr>
<tr>
<td>Spacer-modified TAG PCR primers</td>
<td>IDT or other vendor</td>
</tr>
<tr>
<td>5′ biotinylated reverse PCR primers</td>
<td>IDT or other vendor</td>
</tr>
<tr>
<td>Qiagen® HotStarTaq® 2X Master Mix</td>
<td>Qiagen 203443 or equivalent</td>
</tr>
<tr>
<td>2X Tm Hybridization Buffer</td>
<td>See Target-Specific PCR Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>1X Tm Hybridization Buffer</td>
<td>See Target-Specific PCR Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss, Inc. SAPE-001G75, Life Technologies® S-866, ProZyme® or equivalent</td>
</tr>
<tr>
<td>96-well PCR Plate</td>
<td>BioRad MSP9601</td>
</tr>
<tr>
<td>96-well Bead Hybridization Plate (optional)</td>
<td>Corning Costar 6509</td>
</tr>
<tr>
<td>MicroSeal® A film</td>
<td>BioRad MSA5001</td>
</tr>
<tr>
<td>Magnetic separation plate (special order)</td>
<td>V&P Scientific VP77ILD-4CS or equivalent</td>
</tr>
<tr>
<td>Disposable pipette tips; multi- and single-channel (2-1000 µL)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>25 mL reservoirs (divided well)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>RNase/DNase-Free Microcentrifuge Tubes 1.5 mL</td>
<td>USA Scientific or Equivalent</td>
</tr>
<tr>
<td>Barrier Pipette Tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Vortex Mixer</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Bath Sonicator (40 - 55 kHz)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Centrifuge with Microplate Swinging Bucket Rotor</td>
<td>Eppendorf 5704 or equivalent</td>
</tr>
<tr>
<td>Brayer roller, soft rubber or silicon</td>
<td>USA Scientific 9127-2940</td>
</tr>
<tr>
<td>Thermocycler with 96-well Head and Heated Lid</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Luminex Instrument with xPONENT® 3.1 or higher software</td>
<td>Luminex</td>
</tr>
</tbody>
</table>

For complete equipment and materials list see Appendix B

Note: Molecular grade ddH₂O should be used for all nucleic acid protocols.
Target-specific PCR buffer and reagent recipes

<table>
<thead>
<tr>
<th>Step</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex-TAG Microspheres from Luminex</td>
<td>Required microsphere regions should be purchased from Luminex. They should be stored at 4°C in the dark. For multiplex assays, combine different bead regions as directed in the protocol.</td>
</tr>
<tr>
<td>Enzymes and enzyme reaction buffers</td>
<td>All enzymes and their reaction buffers can be used as directed in the protocol.</td>
</tr>
<tr>
<td>PCR Primer Design</td>
<td>PCR primers should be designed to amplify a region containing any sequence of interest and the pairs should be matched for melting temperatures at 51-56°C. Primers should amplify a region in the 100-150 bp range for best performance. The TAG containing primer should have a 12 to 18 atom spacer separating the TAG sequence on its 5’ end from its sequence specific 3’ end. The reverse primer should be biotinylated on its 5’ end. When designing these primers use oligo design software to select an appropriate TAG sequence to include on the TAG primers or contact Luminex Technical Support for assistance in selecting TAG sequences. These primers can be purchased from multiple vendors, such as IDT. Upon receipt, the primers should be dissolved or diluted with sterile molecular grade ddH₂O to a concentration of 1 mM (1 nanomole/µL). They can be stored as individual stocks at -20°C. Pooled mixes can be made to deliver 0.2 µM of each primer/PCR reaction or as your optimized PCR protocol requires.</td>
</tr>
<tr>
<td>1X Tm Hybridization Buffer</td>
<td>The buffer’s composition is 0.2 M NaCl, 0.1 M Tris, 0.08% Triton X-100, pH 8.0. It should be filter sterilized and stored at 4°C.</td>
</tr>
<tr>
<td>Streptavidin-R-Phycoerythrin (SAPE)</td>
<td>SAPE can be purchased from a number of suppliers such as Moss Incorporated (SAPE-001G75), Life Technologies™ (S866), ProZyme (various) or equivalent. A working aliquot should be made fresh by diluting with 2X Tm Hybridization buffer to the required volume and concentrations needed as indicated in the washed or no wash protocols.</td>
</tr>
</tbody>
</table>

Protocol 5.3.3: Target-specific PCR sequence detection

Target Sequence Amplification

Multiplexed PCR amplification of target regions should be performed under optimized conditions. The parameters listed below are for example purposes only and may not be optimum for your samples or any specific genomic amplification protocol you may be using.
1. Assembly of PCR reactions. Each final reaction contains:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>50 ng</td>
</tr>
<tr>
<td>Qiagen PCR reaction buffer</td>
<td>1X</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1.5 mM</td>
</tr>
<tr>
<td>dNTP</td>
<td>200 µM each</td>
</tr>
<tr>
<td>xTAG and Biotinylated primer</td>
<td>0.2 µM each</td>
</tr>
<tr>
<td>Qiagen HotStar or other Taq polymerase</td>
<td>2.5 Units</td>
</tr>
</tbody>
</table>

2. Cover plate with a plate sealer and place in a thermal cycler. Perform PCR with the following program: (Note: The temperature of the 55°C annealing step can be adjusted as needed.)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
<th>Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>95°C</td>
<td>15 minutes</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>30 seconds</td>
<td>35 cycles</td>
</tr>
<tr>
<td>55°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>30 seconds</td>
<td></td>
</tr>
<tr>
<td>72°C</td>
<td>7 minutes</td>
<td></td>
</tr>
<tr>
<td>4°C</td>
<td>Hold</td>
<td></td>
</tr>
</tbody>
</table>

3. Proceed to hybridization with MagPlex-TAG Microspheres using the no wash protocol.

Hybridization to MagPlex-TAG Microspheres: No wash protocol

1. Select the appropriate MagPlex-TAG microsphere sets and resuspend according to the instructions described in the product information sheet provided with your microspheres.
2. Combine 2500 microspheres of each set per reaction.
3. Dilute/concentrate the MagPlex-TAG microsphere mixture to 125 microspheres of each set per µL in 1X Tm hybridization buffer and mix by vortex and sonication for approximately 20 seconds.
4. Aliquot 20 µL of the MagPlex-TAG microsphere mixture to each well including those for bead background. This will provide 2500 beads of each set per reaction.
5. Add 1 to 5 µL of each PCR reaction to appropriate wells and add 5 µL of dH₂O to each background well.
6. Adjust the total volume to 25 µL by adding the appropriate volume of dH₂O to each sample well that received less than 5 µL of PCR reaction.
7. Prepare reporter mix by diluting SAPE to 8-10 µg/mL in 1X Tm hybridization buffer.
8. Add 70-75 µL SAPE to each well. Mix gently.
9. Cover the plate to prevent evaporation and hybridize in a thermal cycler or a temperature controlled bench top plate shaker with the following parameters; 37-45°C for 25 to 45 minutes (up to 45°C may be used to improve specificity of TAG/anti-TAG annealing.)
10. Analyze 70 µL at hybridization temperature on the Luminex analyzer according to the system manual.

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.

Note: If needed, an Excel based bead calculator is available for determining the method and volumes needed for making the bead mix. Contact Luminex Technical Support.
Recommendations for optimization and troubleshooting

Low Reporter Intensity
1. Verify production of amplified products on agarose gels.
2. Verify labeling of amplified target.
3. Try increasing and decreasing the target input to determine optimal amount.
4. Check primer and target sequences for potential secondary structure.
5. Check primer and target sequences for specific sequence complementarity.
6. Redesign PCR primers to target a different region if needed.
7. Try increasing amount of SAPE.

Poor Discrimination
1. Decrease the target input.
2. Increase the hybridization temperature to 45°C.
3. Verify PCR primer sequence specificity and binding characteristics.
4. Redesign PCR primers to target more unique regions.

High Background
1. If not using SAPE already containing BSA (i.e., Moss SAPE-001G75), dilute SAPE in 1X Tm buffer containing BSA. Final BSA concentration in the hybridization reaction should be 0.1%.
2. If high background is isolated to one or a few microsphere sets, test individual PCR TAG amplicons with the bead mix to determine if the high background is related to specific target cross hybridization with the microspheres.
3. Redesign targets with high background.
4. If high background occurs on all microsphere sets try decreasing the target input to determine optimal amount.
5. Try decreasing amount of SAPE.

Target-specific PCR references

Chapter 5.3.4

Direct DNA Hybridization Sequence Detection

For some applications a Luminex® based genomic assay may require coupling Luminex beads with specific capture sequences that are complementary to organism specific sequences in the labeled reporter molecules generated by an assay chemistry. These different approaches can be used for gene expression analysis, genotyping, specific sequence detection or other applications.\(^1\)\(^-\)\(^3\) In these situations specificity may require coupling capture probes of different lengths and/or similar base compositions to different beads in the multiplex mix.

For these types of applications the hybridization of labeled target sequences to the beads requires stringent hybridization conditions to ensure a high degree of specificity with robust signal strength and low background. To meet these needs, the use of TMAC containing buffers has proven to be a good alternative to other buffer systems.\(^3\)\(^-\)\(^5\)

This protocol outlines a TMAC-based hybridization procedure that can be used for these types of direct hybridization assays as well as other applications.

Figure 24. Direct DNA Hybridization Sequence Detection

Figure 24 - Direct DNA Hybridization Sequence Detection relies on sequence-specific hybridization to capture target sequences. Labeled reporter molecules are incubated with microspheres coupled with a complementary capture sequence. Stringent hybridization conditions are required to discriminate positive reactions from non-specific binding.

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex® Microspheres (oligo-coupled)</td>
<td>Supplied by user</td>
</tr>
<tr>
<td>1.5X TMAC Hybridization solution</td>
<td>See Direct Hybridization Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>1X TMAC Hybridization solution</td>
<td>See Direct Hybridization Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>TE, pH 8.0</td>
<td>See Direct Hybridization Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss, Inc. SAPE-001G75, Life Technologies® S-866, ProZyme® or equivalent</td>
</tr>
<tr>
<td>96-well PCR Plate</td>
<td>BioRad MSP9601</td>
</tr>
<tr>
<td>96-well Bead Hybridization Plate (optional)</td>
<td>Corning® Costar® 6509</td>
</tr>
<tr>
<td>MicroSeal® A film</td>
<td>BioRad MSA5001</td>
</tr>
<tr>
<td>Silicon Mat (optional)</td>
<td>Phenix Research® products SMX-CM</td>
</tr>
<tr>
<td>Magnetic separation plate</td>
<td>Any suitable magnet</td>
</tr>
<tr>
<td>Disposable pipette tips; multi- and single-channel (2-1000 µL)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>25 mL reservoirs (divided well)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>RNase/DNase-Free Microcentrifuge Tubes 1.5 mL</td>
<td>USA Scientific or Equivalent</td>
</tr>
<tr>
<td>Barrier Pipette Tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Vortex Mixer</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Bath Sonicator (40 - 55 kHz)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Centrifuge with Microplate Swinging Bucket Rotor</td>
<td>Eppendorf 5704 or equivalent</td>
</tr>
<tr>
<td>Brayer roller, soft rubber or silicon</td>
<td>USA Scientific 9127-2940</td>
</tr>
<tr>
<td>Thermocycler with 96-well Head and Heated Lid</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Luminex Instrument with xPONENT® 3.1 or higher software</td>
<td>Luminex</td>
</tr>
</tbody>
</table>
Direct hybridization buffer and reagent recipes

<table>
<thead>
<tr>
<th>Step</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex Microspheres coupled with desired capture sequences</td>
<td>Required microspheres region should be purchased from Luminex and coupled with desired capture probes as outlined in the Standard Nucleic Acid Coupling to xMAP® Microspheres protocol (Chapter 5.2.1). The coupled beads should be resuspended as recommended in the coupling protocol and stored at 4°C in the dark. For multiplex assays, combine different coupled bead regions as indicted in the following direct hybridization protocols.</td>
</tr>
<tr>
<td>1.5X TMAC Hybridization solution</td>
<td>The composition of this solution is 4.5 M TMAC (Sigma T3411), 0.15% Sarkosyl (Sigma L7414), 75mM Tris and 6mM EDTA. The solution should be stored at room temperature.</td>
</tr>
<tr>
<td>1X TMAC Hybridization solution</td>
<td>The composition of this solution is 3 M TMAC (Sigma T3411), 0.1% Sarkosyl (Sigma L7414), 50 mM Tris and 4 mM EDTA. The solution should be stored at room temperature.</td>
</tr>
<tr>
<td>TE, pH 8.0</td>
<td>This is a 1X Tris-EDTA Buffer, pH 8.0. It can be purchased directly from any suitable vendor or made from more concentrated stocks. It should be filter sterilized (if diluted from concentrate) and stored at room temperature.</td>
</tr>
<tr>
<td>Streptavidin-R-phycoerythrin (SAPE)</td>
<td>SAPE can be purchased from a number of suppliers such as Moss Incorporated (SAPE-001G75), Life Technologies™ (S866) or ProZyme (various). A working aliquot should be made fresh by diluting with 1X TMAC Hybridization buffer to the required volume and concentrations needed as indicated in the washed or no wash protocols.</td>
</tr>
</tbody>
</table>

Protocol 5.3.4.1: Direct DNA Hybridization - no wash protocol

1. Select the appropriate oligonucleotide-coupled microsphere sets.
2. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
3. Prepare a working microsphere mixture by diluting coupled microsphere stocks to 76 microspheres of each set/µL in 1.5X TMAC hybridization solution. Since 33 µL of working microsphere mixture is required for each reaction this will provide about 2,500 beads of each region/reaction.
4. Mix the working microsphere mixture by vortex and sonication for approximately 20 seconds.
5. To each sample or background well, add 33 µL of working microsphere mixture.
6. To each background well, add 17 µL TE, pH 8.
7. To each sample well add volumes of labeled target reaction and TE, pH 8.0 to a total volume of 17 µL. (Note: For most assay chemistries 1-5 µL of a robust PCR or labeled target reaction will be sufficient for detection.)
8. Mix reaction wells gently by pipetting up and down several times.
9. Cover the plate to prevent evaporation and hybridize in a thermal cycler with the following parameters: 95°C for 5 minutes (denaturation step) 45 to 60°C for 15 to 20 minutes (hybridization step)
10. During the hybridization incubation, prepare fresh reporter mix by diluting SAPE to 6-24 µg/mL in 1X TMAC hybridization solution (which will provide a final SAPE concentration of 2-8 µg/mL). 25 µL of reporter mix is required for each reaction.
11. Add 25 µL of reporter mix to each well and mix gently by pipetting up and down several times.
12. Incubate the reaction plate at hybridization temperature for 5 minutes.
13. Analyze 50 µL at hybridization temperature on the Luminex analyzer according to the system manual.

Protocol 5.3.4.2 - Direct DNA Hybridization washed protocol

1. Select the appropriate oligonucleotide-coupled microsphere sets.
2. Resuspend the microspheres by vortex and sonication for approximately 20 seconds.
3. Prepare a working microsphere mixture by diluting coupled microsphere stocks to 76 microspheres of each set/µL in 1.5X TMAC hybridization solution. Since 33 µL of working microsphere mixture is required for each reaction this will provide about 2,500 beads of each region/reaction.
4. Mix the working microsphere mixture by vortex and sonication for approximately 20 seconds.
5. To each sample or background well, add 33 µL of working microsphere mixture.
6. To each background well, add 17 µL TE, pH 8.
7. To each sample well add volumes of labeled target reaction and TE, pH 8.0 to a total volume of 17 µL. (Note: For most assay chemistries 1-5 µL of a robust PCR or labeled target reaction will be sufficient for detection.)
8. Mix reaction wells gently by pipetting up and down several times.
9. Cover the plate to prevent evaporation and hybridize in a thermal cycler with the following parameters:
 95°C for 5 minutes (denaturation step)
 45 to 60°C for 15 to 20 minutes (hybridization step)
10. During the hybridization incubation, prepare fresh reporter mix by diluting SAPE to 2-8 µg/mL in 1X TMAC hybridization solution.
11. Place plate on plate magnet for 30-60 seconds to pellet the microspheres.
12. After beads have collected on side of wells, carefully remove the supernatant.
13. Remove plate from the plate magnet and return the sample plate to hybridization temperature.
14. Add 75 µL of reporter mix to each well and mix gently by pipetting up and down several times.
15. Incubate the reaction plate at hybridization temperature for 5 minutes.
16. Analyze 50 µL at hybridization temperature on the Luminex analyzer according to the system manual.
Recommendations for Optimization and Troubleshooting

Low Reporter Intensity
1. Verify coupling and hybridization assay components by direct hybridization to labeled reverse complementary oligonucleotides (0 to 200 femtomoles).
2. Verify production of amplified target.
3. Verify labeling of amplified target.
4. Try increasing and decreasing the target input to determine optimal amount.
5. Decrease the hybridization temperature.
6. Check probe and target sequences for potential secondary structure.
7. Increase probe length.
8. Decrease size of target.
9. Redesign probes and target for the opposite DNA strand.

Poor Discrimination
1. If not using SAPE already containing BSA (i.e., Moss SAPE-001G75), dilute SAPE in 1X TMAC buffer containing BSA. Final BSA concentration in the hybridization reaction should be 0.1%.
2. Decrease the target input.
3. Increase the hybridization temperature.
4. Decrease probe length.
5. Redesign probes and target for the opposite strand of DNA.

High Background
1. If not using SAPE already containing BSA (i.e., Moss SAPE-001G75), dilute SAPE in 1X TMAC buffer containing BSA. Final BSA concentration in the hybridization reaction should be 0.1%.
2. If high background is isolated to one or a few microsphere sets, recouple the probes to different microsphere sets to determine if the high background is related to the probes or the microspheres.
3. Resynthesize probes with high background.
4. If high background occurs on all microsphere sets from the same coupling, use coupled microspheres with low background to test hybridization buffers for contamination.
5. Replace all coupling buffers and recouple.

Low Bead Count
1. Microsphere mix was diluted incorrectly. Make sure the microsphere mix is vortexed thoroughly and prepared correctly. *Note: If needed, an Excel based bead calculator is available for determining the method and volumes needed for making the bead mix. Contact Luminex Technical Support for a copy of the bead calculator.*
2. Beads were lost during washes. When using a manual wash, make sure the assay plate is properly seated in the magnetic separator. Make sure you selected a suitable magnetic separator based on the type of plate and reaction volumes used in the assay. Guidelines for plate selection can be found at http://www.luminexcorp.com/blog/selecting-the-right-plate-magnet-for-luminex-assays/ and in Appendix B. Be careful not to hold the pipette tip immediately above the beads/bead pellet; be sure to aim away from the pelleted beads. Carefully remove the supernatant slowly. When using automatic plate washers, make sure the washer settings are programmed according to the plate washer’s User’s Manual and the appropriate separator is used.
4. Incorrect protocol set-up on the Luminex instrument. Make sure correct bead regions are selected based on your particular bead mix.
5. Beads shifting out of region in the bead map on the Luminex instrument. Ensure hybridization/wash buffer was made properly and washes (if any) are performed thoroughly. Make sure the bead solution is stored in the dark at 4°C to prevent photobleaching.

Direct DNA hybridization references

Chapter 5.3.5

MicroRNA Analysis

A number of PCR based and direct hybridization assays are available for the analysis of miRNA expression levels. Most of the PCR based approaches can only be run as singleplex assays in individual reactions or on costly chips increasing processing times, requiring more sample and limiting the number of samples that can be processed rapidly.\(^1\)\(^-\)\(^3\) Hybridization assays can be multiplexed to different degrees with the use of special costly probes, cassettes and analysis instruments.\(^4\)\(^-\)\(^5\) Many of these chemistries are suitable for analysis of expression levels but often lack the ability to distinguish between closely related miRNA targets that differ by a single base. In addition to the lack of single base resolution, these assays can also be costly per sample with low sample throughput capabilities.

To overcome these obstacles, the Luminex® based nuclease protection approach takes advantage of a unique combination of three essential assay characteristics:

1. **Use of MagPlex®-TAG™ Microspheres.** Users can create their own mixes as needed. These magnetic beads are available from Luminex with unique TAG sequences already coupled to them. These sequences are universal array sequences that do not cross-hybridize with each other or with native sequences.

2. **Biotin-labeled chimeric probes.** These are composed of RNA sequences that are 100% complementary to their mature miRNA targets and a DNA sequence which is 100% complementary to specific anti-TAG sequences on the MagPlex-TAG Microspheres. The probes can be easily designed by the user making the assay more cost effective and flexible to meet the user's needs.

3. **Nuclease protection chemistry.** This chemistry, when combined with the assay's step down hybridization protocol, results in single base resolution of nucleotide differences even with miRNA species that cannot be distinguished with other chemistries.

This combination of characteristics also contributes to the assay having a short one day protocol without sacrificing single nucleotide specificity even without PCR amplification.\(^6\) This is achieved by the ability of the biotinylated chimeric probes to specifically bind their miRNA targets in a short period of time with the protocol's step down hybridization approach. The chimeric probe/miRNA complexes are then rapidly captured on MagPlex-TAG beads followed by a short nuclease reaction that degrades mismatched and unbound probes. Following a short SAPE labeling step and some washes, the samples are ready for analysis. The following protocol is based on the former Luminex FLEXMIR® v2 product.
Figure 25. miRNA assay work flow

Materials needed

<table>
<thead>
<tr>
<th>Reagents and Consumables</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MagPlex-TAG Microspheres</td>
<td>Luminex</td>
</tr>
<tr>
<td>Chimeric probes</td>
<td>IDT or other vendor</td>
</tr>
<tr>
<td>Stock RNase One</td>
<td>Promega M4265</td>
</tr>
<tr>
<td>Wash and Hybridization buffer</td>
<td>See miRNA Buffer and Reagent Recipes section</td>
</tr>
<tr>
<td>streptavidin-R-phycoerythrin (SAPE)</td>
<td>Moss SAPE-001G75, Life Technologies® S-866, ProZyme® or equivalent</td>
</tr>
<tr>
<td>96-well PCR Plate</td>
<td>BioRad MSP9601</td>
</tr>
<tr>
<td>96-well Bead Hybridization Plate (optional)</td>
<td>Corning® Costar® 6509</td>
</tr>
<tr>
<td>MicroSeal® A film</td>
<td>BioRad MSA5001</td>
</tr>
<tr>
<td>Silicon Mat</td>
<td>Phenix Research® products SMX-CM</td>
</tr>
</tbody>
</table>

Note: Molecular grade ddH$_2$O should be used for all nucleic acid protocols.
Chapter 5.3.5 MicroRNA Analysis

<table>
<thead>
<tr>
<th>Item</th>
<th>Brand/Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic separation plate (special order)</td>
<td>V&P Scientific VP771LD-4CS or equivalent</td>
</tr>
<tr>
<td>Disposable pipette tips; multi- and single-channel (2-1000 µL)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>25 mL reservoirs (divided well)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>RNase/DNase-Free Microcentrifuge Tubes 1.5 mL</td>
<td>USA Scientific or Equivalent</td>
</tr>
<tr>
<td>Barrier Pipette Tips</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Vortex Mixer</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Bath Sonicator (40 - 55 kHz)</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Centrifuge with Microplate Swinging Bucket Rotor</td>
<td>Eppendorf 5704 or equivalent</td>
</tr>
<tr>
<td>Brayer roller, soft rubber or silicon</td>
<td>USA Scientific 9127-2940</td>
</tr>
<tr>
<td>Thermocycler with 96-well Head and Heated Lid</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Luminex Instrument with xPONENT® 3.1 or higher software</td>
<td>Luminex</td>
</tr>
</tbody>
</table>

miRNA Buffer and Reagent Recipes

Title

<table>
<thead>
<tr>
<th>Title</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzymes and enzyme buffers.</td>
<td>All enzymes and their buffers can be purchased from the recommended manufacturers. Use of each enzyme and its buffer in different master mixes are indicated in the protocol.</td>
</tr>
<tr>
<td>Chimeric probe design strategy</td>
<td>Proper design of the chimeric probes is critical for proper assay performance. (Note: If needed, an Excel based bead calculator is available for determining the method and volumes needed for making the bead mix. Contact Luminex Technical Support for a copy of the bead calculator. To design probes with or without the bead calculator, use the following procedure.)</td>
</tr>
</tbody>
</table>

1. Identify the miRNAs desired for the assay and obtain their sequences.
2. Select MagPlex-TAG bead regions desired for the plex required for cover all miRNAs of interest and internal controls.
3. Design the chimeric capture probes so that each chimeric probe will capture the miRNA desired as well as the anti-TAG sequence on the beads. Note that the capture end for the probe should be RNA and the end for the xTAG® sequence should be DNA. This chimeric oligo should be biotinylated at the RNA 5’ end (see table below).
4. Order the biotinylated chimeric DNA/RNA probes from an oligo vendor. See the Luminex chimeric probe design excel workbook for additional information for probe design characteristics.

Probe Portion

miRNA sequence for mmu-miR-34b-5p	5’-AGGCAGUGUAUUGCUAGAUGUUGU-3’
Reverse complement of miRNA:	5’-ACAACAGCUGAAUUCACUGGCU-3' (RNA)
Anti-TAG sequence on MagPlex-TAG MTAG-A015	5’-GTTGTAAATTGTAGTAAACUGCCU-3’ (RNA)
Reverse complement of anti-TAG Sequence 15:	5’-TACTTCTTTACTACATTTAACAC-3’ (DNA)
Oligo to order: 5’-Biotin-ACAACAGCUGAAUUCACUGGCU-3’	

Note: The probes **MUST** be designed to be a perfect match to the miRNA under investigation, since the high specificity of the method allows single base resolution of mismatches between closely related miRNAs.
Chimeric probe mix:
Individual chimeric probe preparations from the manufacturer can be dissolved to 100 µM with TE buffer pH 8.0. If you need to make probe mixes higher than 100 plex, the individual probe should be dissolved to higher concentrations (200 µM if possible). The individual dissolved probes can be aliquoted and stored frozen at this point (as individual concentrates). To create an equimolar mix of chimeric probes, a concentrated mixed probe stock at 1 µM for each probe is first made then further diluted to generate a working mix where 1.25 µL of probe mix for each reaction delivers 10 nM for each probe.

Example: A 5 plex miRNA profile is to be analyzed on 100 samples. The total number of samples will require 100 x 1.25 µL = 125 µL of a 10 nM probe mix with all 5 probes. Each of the individual chimeric probes are at 100 µM and need to be diluted 1:100 to generate the 1 µM concentrated probe mix. This 1 µM mix can be made by adding 1.25 µL of each probe into an empty tube with 118.75 µL of TE buffer (5 x 1.25 µL = 6.25 µL + 118.75 µL TE buffer creates 125 µL of 1 µM probe mix). The working stock is made fresh by making a 1:100 dilution of this 1 µM probe mix with hybridization buffer to bring the probe mix to the 10 nM concentration. This working dilution is the Chimeric Probe mix that is used at 1.25 µL/reaction as described in the protocol.

Hybridization and wash buffer:
The same buffer is used for hybridization to Luminex beads and washes. It is a pH 7.7 buffer consisting of 10 mM Tris, 200 mM sodium acetate, 5 mM EDTA, and 0.05% Tween 20. This buffer can be made from 3 M sodium acetate stock solution, a 0.5 M EDTA solution (pH 8.0), a 1 M Tris pH 7.5, and a 10% Tween 20 solution - with a final adjustment to the proper pH as needed. Filter sterilize and store at 4°C.

MagPlex-TAG Magnetic bead mixes
Pre-defined MagPlex-TAG bead mixes come in a concentration of 2.5 x 10⁶ beads per region per mL. Since each region should contribute 1,000 beads per reaction, 0.4 µL of the bead stock would be needed for each reaction and can be diluted into a maximum volume of 4.0 µL (see protocol). Creation of a master mixture that is added as 4.0 µL/reaction to deliver 1,000 beads/reaction for each region can be made as follows, assuming the bead stock purchased has all the bead regions required for the assay.

Multiply the number of samples by 0.4 µL. For example, if 100 samples are to be tested, this would be 40.0 µL of bead stock. Since 0.4 µL of this stock is needed per reaction, it can be diluted to the 4.0 µL volume required for each reaction as follows. For 100 samples add 360 µL of TE, pH 8.0 buffer to the 40 µL of bead mix. Place the tube on a magnet or spin to pellet the beads. Remove all of the supernatant. Resuspend the beads in 400 µL of hybridization buffer. This will achieve a mix where 4 µL will deliver 1,000 beads per region to each well for 100 wells/reactions. To compensate for slight fluid loss during pipetting a 20% overage can be calculated for these volumes.

Note: For assays above 10 plex, the use of multiple bead stocks of individual bead regions will require additional concentration steps to make a master mix that can deliver all the required bead regions at 1,000 beads per region in 4 µL. If needed, an Excel based bead calculator is available for determining the method and volumes needed for making the bead mix. Contact Luminex Technical Support for a copy of the bead calculator.
Sample Requirements for the assay:

Only purified total RNA should be used. Purified miRNA or "small RNA" is not recommended. Purification methods used to isolate miRNAs may introduce unwanted bias by selectively purifying some miRNA species over others, resulting in losses that may be universal or specific. Isolation of total RNA has no bias toward particular miRNA species. Traditional methods such as phenol/chloroform extraction may also be used for total RNA extraction. Some older bind-and-elute methods are not suitable as they do not recover miRNAs. Please make sure that a total RNA extraction method that maximizes the recovery of miRNAs is used. Adjust the sample's total RNA concentration to deliver from 250 ng to 500 ng per sample in a volume of 2.5 µL or less.

Example: If the sample RNA concentration is 1 mg/mL (1,000 ng/µL) then combine 0.5 µL RNA with 2.0 µL of hybridization buffer to achieve 500 ng in the 2.5 µL recommended sample volume.

Protocol 5.3.5 – miRNA Analysis

1. In a nuclease free tube, for each sample and a no RNA negative control, make a sample master mix as follows with 20% overage. The total RNA samples should be delivering 250 ng to 500 ng of RNA in 2.5 µL.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>1 rxn</th>
<th>N rxns + 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridization buffer</td>
<td>16.25 µL</td>
<td>(16.25 µL x N) + 20%</td>
</tr>
<tr>
<td>Sample (Total RNA or H2O for Neg. control)</td>
<td>2.5 µL</td>
<td>(2.5 µL x N) + 20%</td>
</tr>
<tr>
<td>Chimeric Probe mix (10 nM each probe)</td>
<td>1.25 µL</td>
<td>(1.25 µL x N) + 20%</td>
</tr>
<tr>
<td>Total volume</td>
<td>20.0 µL</td>
<td>(20.0 µL x N) + 20%</td>
</tr>
</tbody>
</table>

2. Pipette 20.0 µL of the sample master mix to appropriate wells of a 96 well PCR plate.

3. Seal plate with MicroSeal A film using a brayer to secure the seal. Vortex for 5 seconds followed by quick spin to ensure all reagents are at the bottom of the wells.

4. Cover plate with silicon mat and place in thermal cycler programmed with the step down profile using the following parameters:
 - 90°C for 3 minutes
 - 80°C for 6 minutes
 - Program to drop 1°C every 6 minutes until 60°C is achieved (i.e., steps will be 80°C for 6 minutes, then 79°C for 6 minutes, then 78°C for 6 minutes, etc. to 60°C)
 - 37°C and HOLD until user intervention (see steps 5 and 6 below)
 - 37°C for 30 minutes after user intervention
 - 30°C and HOLD for user intervention (see steps 7 to 9 below)
 - 30°C for 30 minutes
 - END

5. At the 37°C HOLD step, pause the thermal cycler and add 4 µL of the bead mix to each well. Mix well by pipetting up and down or remove the re-sealed plate, vortex for 10 to 15 seconds and quick spin for 1-2 seconds. Note: See miRNA Buffer and Reagent Recipes on how to make the bead mix. The bead mix should deliver at least 1,000 beads/region for each reaction.

6. Resume step down program (37°C for 30 minutes).

Note: Microspheres should be protected from prolonged exposure to light throughout this procedure.
7. Nuclease Enzyme digestion: 5 min prior to the completion of the 37°C bead hybridization step, prepare a 1:500 dilution of the stock nuclease enzyme using the hybridization buffer as the diluent. At the 30°C HOLD, pause the thermal cycler, remove MicroSeal A film and add 2.5 µL of diluted nuclease enzyme to each reaction while the plate remains in the cycler. It is important that the enzyme is pipetted into the bottom of the tube, not onto the walls. After addition, seal with new MicroSeal A film.

8. Remove the plate briefly from the thermal cycler and mix well by gentle vortexing, followed by a brief spin (1 to 2 seconds) to bring the all contents down into the bottom of the wells.

9. Return plate to the thermal cycler for the final step of 30°C for 30 minutes.

10. Five minutes prior to the end of the 30°C step, prepare a 1:500 dilution master mix of SAPE in hybridization buffer. Calculate the volume by using 75 µL per well with an overage of 20%. Example: If 10 samples are tested, make 10x75 µL of reporter solution plus 20% overage = 900 µL.

11. Remove the reaction supernatant prior to the addition of SAPE as follows: Place the plate on a magnetic separator. Let the magnetic beads migrate for 2 minutes.

12. Remove MicroSeal A film. With a multi-channel pipette remove the fluid gently from the wells without disturbing the bead pellet.

13. Add 200 µL of wash buffer to each well and resuspend the beads by pipetting up and down 3 or 4 times.

14. Return the plate to the magnetic separator and again allow the microspheres (beads) to migrate and form a pellet for 2 minutes.

15. Again, remove MicroSeal A film and remove the supernatant gently and carefully.

16. Add 75 µL of the diluted SAPE solution and mix by pipetting up and down several times. Seal the plate with MicroSeal A film.

17. Shake the sealed plate on a plate shaker for 30 minutes at room temperature. Shake at a speed that insures a mixing vortex is formed in each well.

18. Remove plate from plate shaker and place it on the magnetic separator, allowing the microspheres to migrate for 2 minutes.

19. Remove all of the solution from the wells by pipetting without disturbing the pellet.

20. Add 200 µL of wash buffer to each well and resuspend the beads by pipetting up and down 3 to 4 times

21. Return the plate to the magnetic separator and allow beads to migrate for 2 minutes and remove all the supernatant without disturbing the bead pellets.

22. Repeat steps 20 to 22 for another wash.

23. Remove plate form magnet and add 100 µL wash buffer and resuspend beads by pipetting up and down 3 to 4 times. Caution: Avoid making foam or bubbles.

24. Read the plate in a suitable Luminex instrument which has been adjusted for the type of plate used. If you prefer, you may transfer the 100 µL of bead suspension to a standard bead hybridization plate (Corning Costar 6509) for analysis.
Recommendations for Optimization and Troubleshooting

High Background
1. Wash steps were not performed thoroughly. Ensure that as much supernatant is removed as possible during each wash step while taking care to avoid disturbing the microsphere pellet.
2. Possible reagent contamination. Replace all buffers first. Use only nuclease-free, barrier pipette tips for all reagent additions and mixing.

Unexpected Results from Control Samples
1. Reagents were not stored at the recommended temperatures. Make sure all reagents are stored at the recommended temperatures. For reagents that are frozen, avoid multiple freeze-thaw cycles. Place reagent master mixes that contain enzymes on ice during preparation. If indicated, pre-warm other reagents to room temperature immediately before use.
2. Vortexing enzyme stocks. You should never vortex enzyme stocks. Instead, flick tube to mix. Gently vortex and quick-spin the enzyme solution only after you have made the recommended dilution.
3. High signal on Negative Control sample due to contamination. Make sure all consumables such as tubes and pipette tips are nuclease-free as well as general reagents such as PBS, 10 mM Tris pH 7.0, and nuclease-free dH₂O. If problem persists, replace all buffer reagents.
4. Positive Control sample signal is too low. Verify that the purified control RNA concentration is correct and the RNA is not degraded.

Low MFI Signal
1. RNA concentration too low or RNA degraded. Verify that the RNA concentration is correct and the RNA is not degraded.
2. Thermal cycler not functioning properly or error in program. Ensure all actual incubation temperatures are within ±2°C of the recommended incubation temperature. Make sure the step down protocol and other steps in the PCR program are entered correctly.
3. Incorrect probe hybridization temperature and/or annealing temperature. Ensure probe hybridization and temperature, annealing temperatures are optimum for the particular probe mix.
4. Nuclease Enzyme too active. Make sure the Enzyme is properly diluted and not at too high a concentration. Decrease concentration if needed.
5. Either SAPE not added or incorrect SAPE dilution used. Make sure SAPE is stored at 4°C in the dark, do not freeze SAPE solutions, and ensure SAPE dilutions are prepared as described in the protocol and SAPE working stock is protected from light.
6. Luminex instrument was not set for detection using high PMT. Ensure Luminex analyzer is set to high reporter gain setting (high PMT).
7. Severe agitation. Avoid foam formation when pipetting reagents. You should perform all reagent additions and mixing gently and to the bottom of the well.
8. Sample evaporation. Make sure all wells are sealed properly, especially during incubations.
9. Reagent additions not performed correctly. Make sure all reagents are added at the bottom of each well. Accurate pipetting is critical for achieving tight %CVs between replicates.
Low Microsphere Count
1. Microsphere mix was diluted incorrectly. Make sure you thoroughly vortex the microsphere mix vial and prepare the dilution as described in the protocol.
2. Microspheres were lost during washes. Use the recommended magnetic plate separator (V&P Scientific VP771LD-4CS) or suitable substitute (see Appendix B). When performing a manual wash, make sure the plate sits properly on the magnetic separator. Be careful not to hold the pipette tip directly above or near where the microspheres are pelleted. Remove the supernatant carefully and slowly. When using automatic plate washers, make sure the washer settings are programmed according to the plate washer instruction manual. Make sure the washing protocol has been optimized for the magnetic separator and plate type used.
3. Incorrect probe height adjustment on instrument. Adjust the probe height according to the instructions in the Adjust the Probe Height section.
4. Incorrect protocol set up on the Luminex instrument. Make sure you enter assay parameters and bead regions correctly when you create your protocol.
5. Microspheres shifting out of region in the bead map on the Luminex instrument. Make sure wash buffer was prepared correctly. Make sure the microsphere solution is stored in the dark at 4°C to prevent photobleaching.

Low Specificity
1. Wrong concentration of probe mix in the reactions. Make sure the probe mix dilution is prepared correctly.
2. Pipetting errors. Verify that pipettes are calibrated and volumes measured are accurate.

Low Sensitivity
1. RNA concentration not correct or RNA degraded. Verify that the RNA concentration not too high or too low and that the RNA is not degraded.
2. Carryover contamination. Make sure you carefully perform the manual washes to avoid sample transfer mistakes or carryover contamination. While removing plate sealers, make sure well contents do not splash over adjacent wells.
3. Chimeric probe hybridization to RNA needs to be optimized. Probe concentration or hybridization temperatures need to be adjusted. A chimeric probe titration series and different probe hybridization step down temperature range may need to be tested.
4. Chimeric probe sequences not accurate. Make sure the chimeric probe sequences are the correct reverse complement to the target RNA sequence. Use the Excel based miRNA Chimeric probe design tool for proper probe design. Contact Luminex Technical Support to receive a copy of this spreadsheet tool.
5. Bead hybridization temperature too high or low. A temperature gradient may be needed to determine the optimum bead hybridization temperature.
MicroRNA references

Chapter 5.4

Optimization of Nucleic Acid Assays

Probe Design Strategy for Direct Hybridization

1. All probes should be exactly the same length per target sequence (using TMAC hybridization buffer).
2. For detection of point mutations, use probes between 18 and 24 nucleotides in length. 20 nucleotides is a good starting point.
3. If point mutations (or SNPs) are expected in a sequence they should be positioned at the center of the probe sequence (i.e., position 10 or 11 for a 20 nucleotide probe). Multiple polymorphisms should be equally spaced throughout the probe sequence. Point mutations may be positioned off-center if necessary to prevent secondary structure in probe sequence. Usually, adequate specificity can be achieved if a point mutation is at nucleotide position 8-14 in a 19 or 20 nucleotide probe.
4. Probes should be synthesized for all sequence variants (all mutant and wild type sequences) and should be from the same DNA strand (per target sequence).
5. For unrelated sequences, probes may be lengthened. Better sensitivity may be achieved with longer probes (50 or 70 nucleotides).
6. Probes must have a primary amino group for coupling to the carboxyl group on the microsphere. We suggest synthesizing the oligonucleotide with a 5’ amine-spacer (See 7.).
7. Probes must have a spacer between the reacting amine and the hybridizing sequence. We recommend synthesizing capture probes with 5’ Amino Modifier C12.

Tips, Important Points & Critical Factors for Direct Hybridization

1. Amine-substituted oligonucleotide probes should be resuspended and diluted in dH₂O. Tris, azide or other amine-containing buffers must not be present during the coupling procedure. If oligonucleotides were previously solubilized in an amine-containing buffer, desalting by column or precipitation and resuspension into dH₂O is required.
2. We recommend using EDC from Pierce for best results. EDC is labile in the presence of water. The active species is hydrolyzed in aqueous solutions at a rate constant of just a few seconds, so care should be taken to minimize exposure to air and moisture. EDC should be stored desiccated at -20°C in dry, single-use aliquots with secure closures. A fresh aliquot of EDC powder should be used for each addition. Allow the dry aliquot to warm to room temperature before opening. Prepare a fresh 10 mg/mL EDC solution immediately before each of the two additions and discard after use.
3. Uncoupled microspheres tend to be somewhat sticky and will adhere to the walls of most microcentrifuge tubes, resulting in poor post-coupling microsphere recovery. We have found that copolymer microcentrifuge tubes from USA Scientific (#1415-2500) perform best for coupling and yield the highest microsphere recoveries post-coupling. Eppendorf Protein LoBind® (#022431081) also perform well for microsphere coupling.

4. 100 mM MES, pH 4.5 should be filter-sterilized and either prepared fresh or stored at 4°C between uses. Do not store at room temperature. The pH must be in the 4.5-4.7 range for optimal coupling efficiency.

5. The optimal amount of a particular oligonucleotide capture probe for coupling to carboxylated microspheres is determined by coupling various amounts in the range of 0.04-1 nmol per 5 x 10^6 microspheres. Usually, 0.2 to 1 nmol per 5 x 10^6 microspheres in a 50 μL reaction is optimal. The coupling procedure can be scaled up or down. Above 5 x 10^6 microspheres, use the minimum volume required to resuspend the microspheres. Below 5 x 10^6 microspheres, maintain the microsphere concentration and scale down the volume accordingly.

6. We use 5 M TMAC (Tetramethylammonium chloride) solution from Sigma (T-3411) for preparation of 1.5X and 1X TMAC hybridization solutions. We find that this TMAC formulation does not have a strong “ammonia” odor. TMAC hybridization solutions should be stored at room temperature to prevent precipitation of the Sarkosyl. TMAC hybridization solutions can be warmed to hybridization temperature to re-solubilize precipitated Sarkosyl.

7. Denaturation and hybridization can be performed in a thermal cycler. Use a heated lid and a spacer (if necessary) to prevent evaporation. Maintain hybridization temperature throughout the labeling and analysis steps.

8. The hybridization kinetics and thermodynamic affinities of matched and mismatched sequences can be driven in a concentration-dependent manner. At concentrations beyond the saturation level, the hybridization efficiency can decrease presumably due to competition of the complementary strand and renaturation of the PCR product. Therefore, it is important to determine the range of target concentrations that yield efficient hybridization without sacrificing discrimination.

9. Whether it is necessary to remove the hybridization supernatant before the labeling step is depend on the amount of biotinylated PCR primers and unhybridized biotinylated PCR products that are present and available to compete with the hybridized biotinylated PCR product for binding to the SAPE reporter.
Oligonucleotide coupling optimization

It is recommended that you check the efficiency of each coupling with a range of biotinylated complementary oligonucleotide concentrations. For example, if you coupled xMAP® Microsphere #1 to 4 different amounts of oligo #1 (ranging from 0.04 nmol to 5.0 nmol), each of these couplings should be hybridized with several amounts of biotinylated complementary oligonucleotide target as shown below:

<table>
<thead>
<tr>
<th>5 fmols labeled complementary target</th>
<th>25 fmols labeled complementary target</th>
<th>50 fmols labeled complementary target</th>
<th>100 fmols labeled complementary target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead 1- no oligo #1</td>
</tr>
<tr>
<td>Bead 1- 0.04 nmol oligo #1</td>
</tr>
<tr>
<td>Bead 1- 0.20 nmol oligo #1</td>
</tr>
<tr>
<td>Bead 1- 1.00 nmol oligo #1</td>
</tr>
<tr>
<td>Bead 1- 5.00 nmol oligo #1</td>
</tr>
<tr>
<td>H₂O background (no beads)</td>
<td>H₂O background (no beads)</td>
<td>H₂O background (no beads)</td>
<td>H₂O background (no beads)</td>
</tr>
</tbody>
</table>

Figure 26. – Plot of experimental results for oligo coupling, as measured by a Luminex® analyzer. Results show that 0.2 nmol for a 5 million microsphere coupling yielded highest MFI values. Optimal amount for typical coupling is usually 0.2 to 1 nanomole per 5 million microspheres.
To determine the optimum ratio for scaled up or for smaller coupling reactions, use the following table as a guide for adjusting the amount of reagents used in the coupling reactions:

Recommendations for Scaling Oligonucleotide-Microsphere Coupling

<table>
<thead>
<tr>
<th>Number of Microspheres</th>
<th>Reaction Volume</th>
<th>Probe Input</th>
<th>EDC Concentration</th>
<th>Tween-20 Wash Volume</th>
<th>SDS Wash Volume</th>
<th>Final Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 10^6</td>
<td>10 μL</td>
<td>0.04-0.1 nmol</td>
<td>0.5-1 mg/mL</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
<td>20 μL</td>
</tr>
<tr>
<td>2.5 x 10^6</td>
<td>25 μL</td>
<td>0.1-0.2 nmol</td>
<td>0.5-1 mg/mL</td>
<td>0.5 mL</td>
<td>0.5 mL</td>
<td>50 μL</td>
</tr>
<tr>
<td>5 x 10^6</td>
<td>50 μL</td>
<td>0.2-1 nmol</td>
<td>0.5-1 mg/mL</td>
<td>1.0 mL</td>
<td>1.0 mL</td>
<td>100 μL</td>
</tr>
<tr>
<td>10 x 10^6</td>
<td>50 μL</td>
<td>0.5-1 nmol</td>
<td>0.5-1 mg/mL</td>
<td>1.0 mL</td>
<td>1.0 mL</td>
<td>200 μL</td>
</tr>
<tr>
<td>50 x 10^5</td>
<td>50-100 μL</td>
<td>1-4 nmol</td>
<td>0.5-1 mg/mL</td>
<td>1.0 mL</td>
<td>1.0 mL</td>
<td>1.0 mL</td>
</tr>
<tr>
<td>100 x 10^6</td>
<td>100-200 μL</td>
<td>1-4 nmol</td>
<td>0.5-1 mg/mL</td>
<td>1.0 mL</td>
<td>1.0 mL</td>
<td>2.0 mL</td>
</tr>
<tr>
<td>200 x 10^6</td>
<td>200-300 μL</td>
<td>2 nmol</td>
<td>0.5-1 mg/mL</td>
<td>1.0 mL</td>
<td>1.0 mL</td>
<td>4.0 mL</td>
</tr>
<tr>
<td>400 x 10^6</td>
<td>400 μL</td>
<td>4 nmol</td>
<td>0.5-1 mg/mL</td>
<td>1.0 mL</td>
<td>1.0 mL</td>
<td>8.0 mL</td>
</tr>
</tbody>
</table>

a We recommend titrating the probe input to optimize coupling for the particular application when needed.

b Resuspension volume of TE, pH 8.0 for 50,000 microspheres/μL assuming 100% recovery. Adjust as needed.
Chapter 5.5

Nucleic Acid Assay Validation

After confirmation of successful coupling and sufficient signal from a multiplex assay, coupled microspheres should be further validated as a genomic assay. Each assay may have specific validation requirements, but typical parameters include Accuracy, Limit of Detection (LoD), Limit of Background (LoB), Input Range, Precision, Reproducibility and Potential Interfering Substances. The examples for genomic/genotyping assays described below are for informational purposes only. Several resources are available for guidance in determining the performance characteristics for an assay, such as those listed at the end of this section. Be sure to consult the references appropriate for your laboratory and assay to ensure all required parameters have been incorporated into your validation study design. The Clinical and Laboratory Standards Institute (www.clsi.org) is a good source for consensus standards and guidelines for molecular methods.

Accuracy
Generally, assay results should be compared to a ‘gold standard’ method. For genotyping assays, this standard is sequencing.

Limit of Detection (LOD)
LOD is defined as the lowest amount of genomic DNA in a sample for which the assay can detect genotypes with a given accuracy and precision. For example, one may choose to use a probability of 95% with a false negative level of 5%. Smaller error levels may also be considered.

Limit of Background (LOB)
LOB is defined as the highest measurement result (MFI) that is likely to be observed for a sample that is negative for a mutation.

Input Range
Input range is defined as the range of input DNA for which the assay can accurately detect genotypes with a stated probability, for example, at a 95% positivity rate with a 95% confidence interval (CI).

Precision and Reproducibility
Evaluate pre- and post-extraction reproducibility; and also within-run and between-run reproducibility. Some examples are listed below.

• Precision
 • 1 site, 21 runs, 3 reagent lots and 3 instruments
 • Multiplexed assays vs ‘X’ specimens with single analyte, 4 specimens with two analytes (one high, one low) and one negative control specimen in sample matrix.

• Reproducibility
• 3 sites, 5 runs, ‘X’ single-positive specimens at three dilutions, 4 specimens with dual-positive specimens and 1 negative specimen.
• Dilutions at LOD, 0.1 x LOD NS 10 or 100 x LOD
• Each sample tested in 6 replicates per run
• Extraction method - ‘X’ samples tested with 3 lots each of 3 different extractions methods.
• LOD/LOB
 • 25-80 replicates per dilution; non-Gaussian – nonparametric ranking methods are used.
 • LOD for each target, >95% positive calls (beta or type II error risk <5%)
 • LOB for each target, <5% positive calls (alpha or type I error risk <5%)

Interfering Substances
Examine the effects of potential interfering substances that might be expected to be found in samples. For example, in whole blood samples potential interfering substances include hemoglobin, bilirubin, and various triglycerides.

Genomics assay validation references

Chapter 5.6

Genomics FAQ's

What primer design software should I use?

Luminex® has not tested every primer design software available on the market. Customers have used PrimerPlex from Premier Biosoft as well as others.

References using PrimerPlex software for xMAP® genomics assays:

How do I choose which genomic format to use?
The table below will provide a general guidelines on which method to choose.

Nucleic Acid Format Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Direct Hybridization</th>
<th>xTAG®/ASPE</th>
<th>xTAG/OLA</th>
<th>Target Specific PCR Sequence Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage</td>
<td>SNPs, Multiple polymorphisms, Unrelated sequences</td>
</tr>
<tr>
<td>Plex</td>
<td>Best for low-mid plex (1-50), more possible</td>
<td>Up to 500-plex</td>
<td>Up to 500-plex</td>
<td>Best for low-mid plex (1-50)</td>
</tr>
<tr>
<td>Oligos Required</td>
<td>PCR Primers, Capture Probes</td>
<td>PCR Primers, Target-specific Primers</td>
<td>PCR Primers, Target-specific Primers</td>
<td>Target-specific PCR Primers</td>
</tr>
<tr>
<td>Coupling Required</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Workflow</td>
<td>PCR, <300 bp Biotinylate Target Strand Hybridization & Detection</td>
<td>PCR, all sizes Exo-SAP, Enzymatic Genotyping Hybridization & Detection</td>
<td>PCR, all sizes Enzymatic Genotyping Hybridization & Detection</td>
<td>Target-specific PCR <300 bp Hybridization & Detection</td>
</tr>
<tr>
<td>Hybridization Conditions</td>
<td>TMAC Buffer, 45-55°C (optimize)</td>
<td>Tm Buffer, 37°C 30 minutes Wash/No Wash</td>
<td>Tm Buffer, 37°C 30 minutes Wash/No Wash</td>
<td>Tm Buffer, 37-45°C 25-45 minutes Wash/No Wash</td>
</tr>
<tr>
<td>Total Time</td>
<td>~3.5 hours</td>
<td>~6-7 hours</td>
<td>~4 hours</td>
<td>~4.5 hours</td>
</tr>
</tbody>
</table>

Are there other methods for genomic assays that are not described in the xMAP Cookbook?

Yes, and a few examples are listed below: xMAP Technology is very flexible and scientists have been creative in designing a multitude of methods. Some Examples of Other Genomics Application References:

Appendix A

Common Buffers Used in xMAP® Protocols

xMAP® Buffers

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Composition</th>
<th>Use(s)</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activation Buffer</td>
<td>0.1 M NaH<sub>2</sub>PO<sub>4</sub>, pH 6.2</td>
<td>Microsphere ("bead") activation buffer for protein coupling</td>
<td>Sigma S3139</td>
<td>Adjust to pH 6.2 with 5 N NaOH Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>Coupling Buffer</td>
<td>50 mM MES, pH 5.0</td>
<td>Microsphere-protein coupling buffer</td>
<td>Sigma M2933</td>
<td>Adjust to pH 5.0 with 5 N NaOH Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>Phosphate buffered saline (PBS), pH 7.4</td>
<td>138 mM NaCl, 2.7 mM KCl, pH 7.4</td>
<td>Alternate microsphere-protein coupling buffer</td>
<td>Sigma P3813</td>
<td>Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>PBS-Tween buffer</td>
<td>PBS, 0.05% Tween-20, pH 7.4</td>
<td>Microsphere wash buffer</td>
<td>Sigma P3563</td>
<td>Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>PBS-BN buffer</td>
<td>PBS, 1% BSA, 0.05% sodium azide</td>
<td>Microsphere blocking/storage buffer</td>
<td>Sigma P3688 Sigma S8032</td>
<td>Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>PBS-TBN buffer</td>
<td>PBS, 0.1% BSA, 0.02% Tween-20, 0.05% sodium azide</td>
<td>Microsphere blocking/storage buffer</td>
<td>Sigma P3813 Sigma A7888 Sigma P9416 Sigma S8032</td>
<td>Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>Assay/Wash Buffer</td>
<td>PBS, 1% BSA, pH 7.4</td>
<td>Assay buffer</td>
<td>Sigma P3688</td>
<td>Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>0.1 M MES Buffer pH 4.5</td>
<td>0.1 M MES</td>
<td>Oligonucleotide-microsphere coupling buffer</td>
<td>Sigma M2933</td>
<td>Adjust pH w/ 5N NaOH Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>0.02% Tween-20 Wash</td>
<td>0.02% Tween-20</td>
<td>Oligo coupling wash buffer</td>
<td>Sigma P9416</td>
<td>Filter sterilize Store at room temperature</td>
</tr>
<tr>
<td>0.1% SDS Wash</td>
<td>0.1% SDS</td>
<td>Oligo coupling wash buffer</td>
<td>Sigma L4522</td>
<td>Filter sterilize Store at room temperature</td>
</tr>
<tr>
<td>EDC</td>
<td>1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC)</td>
<td>Microsphere coupling activation</td>
<td>Pierce 77149 ProteoChem c1100-100mg</td>
<td>Store desiccated at -20 °C</td>
</tr>
<tr>
<td>TE Buffer pH 8.0</td>
<td>TE</td>
<td>General purpose nucleic acid buffer</td>
<td>Sigma T9285</td>
<td>Filter sterilize Store at room temperature</td>
</tr>
<tr>
<td>2X Tm Hybridization Buffer</td>
<td>0.2 M Tris pH 8.0, 0.4 M NaCl, and 0.16% Triton® X-100</td>
<td>xTAG® DNA hybridization reactions</td>
<td></td>
<td>Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>1X Tm Hybridization Buffer</td>
<td>0.1 M Tris pH 8.0, 0.2 M NaCl, and 0.08% Triton® X-100</td>
<td>xTAG labeling and wash buffer</td>
<td></td>
<td>Filter sterilize Store at 4 °C</td>
</tr>
<tr>
<td>1.5X TMAC Hybridization Solution</td>
<td>4.5 M TMAC, 0.15% Sarkosyl solution, 75 mM Tris-HCL, 6 mM EDTA (pH 8.0)</td>
<td>Direct DNA hybridization microsphere diluent</td>
<td>Sigma T3411 Sigma L7414 Sigma T3038 Invitrogen 15575-020</td>
<td>Filter sterilize Store at room temperature</td>
</tr>
</tbody>
</table>

Appendix A | Common Buffers Used in xMAP® Protocols www.luminexcorp.com | Page 138
1X TMAC Hybridization Solution 3 M TMAC, 0.1% Sarkosyl solution, 50 mM Tris-HCL, 4 mM EDTA (pH 8.0) Direct DNA hybridization labeling and wash buffer
Add 1 part Molecular Grade ddH₂O to 2 parts 1.5X TMAC Hybridization Solution
Filter sterilize
Store at room temperature

1. Activation can be performed in 50 mM MES, pH 6.0–6.2, with similar results.
2. Coupling can be performed in 100 mM MES, pH 6.0, with similar results. For some proteins, better solubility and better coupling may be achieved at a higher coupling pH.
3. Alternative coupling buffer for proteins that do not couple well at pH 5-6.
4. Also used as assay buffer.
5. Also used as wash buffer.

Incompatible Buffers

The following solvents should not be used with Luminex® microspheres as they will affect the classification dyes in the microspheres:

Aromatic hydrocarbons
- Benzene
- Toluene
- Xylene

Hydrocarbons
- Methylene chloride
- Chloroform

Others
- Pyridine
- Dioxane
- Dimethylformamide
- Methyl ethyl ketone
- Diisopropyl ketone
- Cyclohexanone
- Tetrahydrofuran
- N-butyl phthalate
- Methyl phthalate
- Ethyl phthalate
- Tetrahydrofurfuryl alcohol

High Salt Buffers

High salt concentrations will affect the classification of the microspheres on the Luminex® 100/200™ and FLEXMAP 3D®. As the salt concentration of the buffer increases, the microspheres will tend to spread out on the bead map. High salt buffers (6X SSC, >0.2 M NaCl) should be diluted or exchanged prior to analysis as they can interfere with microsphere classification.

Note: Luminex® R&D has tested 10% DMSO at 37°C (98.6°F) for 1 month with no obvious change in microsphere properties. Testing of 20% DMSO was shown to have no effect over a period of several hours, but no long-term studies have been done at this concentration.
Appendix B

Equipment needed for xMAP® protocols

<table>
<thead>
<tr>
<th>Immunoassay Equipment</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminex® xMAP® analyzer with xPONENT® software¹</td>
<td>Luminex</td>
</tr>
<tr>
<td>Magnet for 1.5 mL microcentrifuge tube washing²</td>
<td>(Dynal® MPC®-S Magnetic Particle Concentrator, Invitrogen 120-20D) or equivalent.</td>
</tr>
<tr>
<td>Magnet for 96 well plate washing³</td>
<td>(See list below)</td>
</tr>
<tr>
<td>Balance</td>
<td>Any suitable brand capable of weighing down to 0.1 mg</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Hemacytometer or Cell Counter</td>
<td>Cellometer® Auto 2000, TC10, TC20 Cell Counter, Countess® Automated Cell Counter</td>
</tr>
<tr>
<td>Vortex mixer</td>
<td>Any suitable brand</td>
</tr>
<tr>
<td>Sonicator bath</td>
<td>Ultrasonic Cleaner, Cole-Parmer®, A-08849-00 or equivalent</td>
</tr>
<tr>
<td>Rotator</td>
<td>Any suitable brand capable of 15-30 rpm</td>
</tr>
<tr>
<td>Microtiter plate shaker</td>
<td>Any suitable brand capable of 800 rpm</td>
</tr>
<tr>
<td>96-well plate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nucleic Acid Assay Equipment</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocycler with 96-well Head and Heated Lid</td>
<td>Any suitable brand</td>
</tr>
</tbody>
</table>

1. Note: MAGPIX® has the ability to perform a final wash step prior to reading the plate.
2. Note: If a magnet is not available, use a microcentrifuge (8000 x g for 1-2 minutes).
3. Note: If a magnet not available, use a centrifuge compatible with 96 well plates (8000 x g for 1-2 minutes)
4. Note: LumAvidin® beads are not magnetic and require MultiScreen™ Filter Plates (Millipore, MABV N12) and vacuum pump system manifold for vacuum pump system, such as the MultiScreen Resist Vacuum Manifold from Millipore (MAVM0960R).
Magnetic Separators for MagPlex® Microspheres with compatible tubes and plates*

<table>
<thead>
<tr>
<th>Product</th>
<th>Use</th>
<th>Source</th>
<th>Compatible Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminex Magnetic Tube Separator</td>
<td>Coupling</td>
<td>Luminex Corporation, CN-0288-01</td>
<td>1.5 mL, co-polymer microcentrifuge tubes (USA Scientific 1415-2500)</td>
</tr>
<tr>
<td>Dynal MPC®-S magnetic particle</td>
<td>Coupling</td>
<td>Life Technologies® A13346</td>
<td>1.5 mL, co-polymer microcentrifuge tubes (USA Scientific 1415-2500)</td>
</tr>
<tr>
<td>concentrator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminex magnetic plate separator</td>
<td>Assays</td>
<td>Luminex Corporation CN-0269-01</td>
<td>96-well, round-bottom polystyrene solid plates (Costar® 3789 or 3792)</td>
</tr>
<tr>
<td>LifeSep™ 96F magnetic separation unit</td>
<td>Assays</td>
<td>Dexter Magnetic Technologies®, Inc. 2501008</td>
<td>96-well, round-bottom polystyrene solid plates (Costar 3789 or 3792)</td>
</tr>
<tr>
<td>Ambion® 96-well magnetic ring stand</td>
<td>Assays</td>
<td>Life Technologies® AM10050</td>
<td>96-well, round-bottom polystyrene solid plates (Costar 3789 or 3792)</td>
</tr>
<tr>
<td>96-well plate magnet</td>
<td>Assays</td>
<td>PerkinElmer® (Customer Care) 5083175</td>
<td>96-well, round-bottom polystyrene solid plates (Costar 3789 or 3792) 96-well, Thermowell® P polycarbonate PCR plates (Costar 6509) 96-well, F-bottom, (chimney well), µclear, med. Binding, black (Greiner® bio-one 65096) Aluminum Foil Lids (Beckman® 538619) or equivalent</td>
</tr>
</tbody>
</table>

*Note: LumAvidin beads are not magnetic and require MultiScreen Filter Plates (Millipore, Cat. No. MABV N12) and vacuum pump system manifold for vacuum pump system, such as the MultiScreen™ Resist Vacuum Manifold from Millipore (MAVM0960R)
Compatible Plates and Consumables

<table>
<thead>
<tr>
<th>Description</th>
<th>Use</th>
<th>Analyzer(s)</th>
<th>Source</th>
<th>Catalog Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 mL copolymer microcentrifuge tubes</td>
<td>Coupling</td>
<td></td>
<td>USA Scientific</td>
<td>1415-2500</td>
<td></td>
</tr>
<tr>
<td>1.5 mL Protein LoBind microcentrifuge tubes</td>
<td>Coupling</td>
<td></td>
<td>Eppendorf</td>
<td>22431081</td>
<td></td>
</tr>
<tr>
<td>Extended Fine Tip Transfer Pipette</td>
<td>Coupling</td>
<td></td>
<td>Samco Scientific</td>
<td>233</td>
<td>Good for removing supernatant from coupling wash steps</td>
</tr>
<tr>
<td>96-well, flat bottom, polystyrene solid plates</td>
<td>Protein/Unheated assays</td>
<td>Luminex® 100/200™, FLEXMAP 3D®, MAGPIX</td>
<td>Corning (Costar)</td>
<td>3912, 3915</td>
<td></td>
</tr>
<tr>
<td>96-well, round bottom, polystyrene solid plates</td>
<td>Protein/Unheated assays</td>
<td>Luminex 100/200, FLEXMAP 3D, MAGPIX</td>
<td>Corning (Costar)</td>
<td>3789, 3792</td>
<td></td>
</tr>
<tr>
<td>96-well, Thermostodd polycarbonate PCR plates, Model P</td>
<td>Nucleic Acid/Heated</td>
<td>Luminex 100/200, FLEXMAP 3D, MAGPIX</td>
<td>Corning (Costar)</td>
<td>6509</td>
<td>Can be used for washes with vacuum filtration for LumAvidin/ nonmagnetic beads</td>
</tr>
<tr>
<td>96-well, Multiscreen-BV 1.2 mm filter plates</td>
<td>Protein/Unheated</td>
<td>Luminex 100/200, FLEXMAP 3D, MAGPIX</td>
<td>EMD Millipore®</td>
<td>MABVN1250</td>
<td></td>
</tr>
<tr>
<td>96-well, uClear, flat bottom, chimney well plates</td>
<td>Protein/Unheated</td>
<td>Luminex 100/200, FLEXMAP 3D, MAGPIX</td>
<td>Greiner Bio-One</td>
<td>655096</td>
<td></td>
</tr>
<tr>
<td>384-well, uClear, flat bottom, chimney well plates</td>
<td>Protein/Unheated</td>
<td>FLEXMAP 3D</td>
<td>Greiner Bio-One</td>
<td>781906</td>
<td></td>
</tr>
<tr>
<td>384-well, Thermowend GOLD polypropylene microplates</td>
<td>Nucleic Acid/Heated</td>
<td>FLEXMAP 3D</td>
<td>Corning (Costar)</td>
<td>3757</td>
<td></td>
</tr>
<tr>
<td>384-well, Armadillo PCR Plates</td>
<td>Nucleic Acid/Heated</td>
<td>FLEXMAP 3D</td>
<td>Thermo Scientific</td>
<td>AB-2384</td>
<td></td>
</tr>
<tr>
<td>384-well, Hard-Shell, thin wall, skirted PCR Plates</td>
<td>Nucleic Acid/Heated</td>
<td>FLEXMAP 3D</td>
<td>Bio-Rad</td>
<td>HSP-3805</td>
<td></td>
</tr>
<tr>
<td>384-well, twin.tec PCR plate</td>
<td>Nucleic Acid/Heated</td>
<td>FLEXMAP 3D</td>
<td>Eppendorf</td>
<td>951020702</td>
<td></td>
</tr>
<tr>
<td>96-well microplate aluminum sealing tape</td>
<td>Nucleic Acid/Heated</td>
<td>FLEXMAP 3D, MAGPIX</td>
<td>Corning (Costar)</td>
<td>6570</td>
<td></td>
</tr>
<tr>
<td>Microseal 'A' film</td>
<td>Nucleic Acid/Heated</td>
<td>Luminex 100/200, FLEXMAP 3D, MAGPIX</td>
<td>Bio-Rad</td>
<td>MSA-5001</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C

Automated Bead Washing Option

BioTek® ELx405 and ELx406 Microplate Washer – Keypad Programming Instructions

Luminex® Mag Bead Assay Wash 96-well Protocol – 2 Cycle Wash with No Final Dispense

1) Create SOAK program.

DEFINE → **CREATE** → **MORE** → **SOAK** → name (Ex. SOAK60) note: to get letters, scroll through with **OPTIONS** button → **ENTER**.

SOAK DURATION: 60 SEC → **ENTER**.

SHAKE BEFORE SOAK?: YES → **ENTER**.

SHAKE DURATION: 1 SEC → **ENTER**.

SHAKE INTENSITY: 1 → **ENTER**.

OK TO SAVE PROGRAM? YES → **ENTER**.

2) Create ASPIRATION program.

DEFINE → **CREATE** → **MORE** → **ASPIR** → name (Ex. ASPIR) note: to get letters, scroll through with **OPTIONS** button → **ENTER**.

PLATE TYPE: 96 → **ENTER**.

ASPIRATE HEIGHT: 58 → **ENTER**.

HORIZONTAL ASPR POS: -50 → **ENTER**.

HORIZ Y ASPR POS: 0 → **ENTER**.

ASPIRATION RATE: 1 → **ENTER**.

ASPIRATE DELAY: 0 → **ENTER**.

CROSSWISE ASPIR: NO → **ENTER**.

OK TO SAVE PROGRAM? YES → **ENTER**.

3) Create WASH program.

DEFINE → **CREATE** → **WASH** → name (Ex. WASH2X) note: to get letters scroll through with **OPTIONS** button → **ENTER**.

SELECT REAGENT BOTTLE: A → **ENTER**.

PLATE TYPE: 96 → **ENTER**.

METHOD → **NUMBER OF CYCLES**: 2 → **ENTER** → SOAK/SHAKE: YES → **ENTER** → SOAK DURATION: 60 SEC → **ENTER** → SHAKE BEFORE SOAK: NO → **ENTER** → PRIME AFTER SOAK: NO → **ENTER**.

Note: For use with BioTek-provided magnet P/N 7103016 (Dexter LifeSep 96F technology) and round-bottom 96-well microplate

Note: Program delays for 60 seconds with 96-well plate on magnet prior to an aspiration followed by a two cycle wash with 60 second delays after each dispense and ends with a final aspiration

Note: Instructions created 1/6/2011 by J. Greene, BioTek Instruments with settings determined by H. Baker, Luminex Corporation
DISP →
DISPENSE VOLUME: **100 UL/WELL** → ENTER.
DISPENSE FLOW RATE: **9** → ENTER.
DISPENSE HEIGHT: **128** → ENTER.
HORIZONTAL DISP POS: **0** → ENTER.
HORIZ Y DISP POS: **0** → ENTER.
DISABLE ASPIRATE? **NO** → ENTER.

BOTTOM WASH FIRST?: **NO** → ENTER.
PRIME BEFORE START?: **NO** → ENTER.

ASPIR →
ASPIRATE HEIGHT: **58** → ENTER.
HORIZONTAL ASPR POS: **-50** → ENTER.
HORIZ Y ASPR POS: **0** → ENTER.
ASPIRATION RATE: **7** → ENTER.
ASPIRATE DELAY: **0** → ENTER.
CROSSWISE ASPIR: **NO** → ENTER.
FINAL ASPIRATION: **YES** → ENTER.
FINAL ASPIR DELAY: **0** → ENTER.

MAIN MENU → OK TO SAVE PROGRAM?: **YES** → ENTER.

4) Create LINK program.
DEFINE → **CREATE** → **MORE** → **LINK** → name (Ex. LUMINEX) note: to get letters, scroll through with OPTIONS button → **ENTER** → **MORE** → **SOAK** (scroll through using OPTIONS button to find SOAK program you made in step # 1) → **ENTER** → **MORE** → **ASPIR** (scroll through using OPTIONS button to find ASPIR program you made in step # 2) → **ENTER** → **WASH** (scroll through using OPTIONS button to find WASH program you made in step # 3) → **ENTER**.

MAIN MENU → OK TO SAVE PROGRAM?: **YES** → ENTER.

5) Run LINK program.
- After creating LINK program, this is what you will actually run when washing plates.
- RUN → **MORE** → **LINK** (scroll through with OPTIONS button to find LINK program you made in step # 4) → **ENTER**.

6) Basic maintenance.
- Before each use:
 RUN → PRIME (using your wash buffer) → scroll through using OPTIONS to **PRIME 200** → ENTER.
- End of the day:
 Switch to bottle containing rinse liquid (ex. deionized water).
 MAINT → scroll through using OPTIONS to **OVERNIGHT LOOP** → ENTER.